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Abstract
Shape descriptor design is an important but challenging problem for non-rigid 3D shape retrieval. Recently, bag-
of-words based methods are widely used to integrate a model’s local shape descriptors into a global histogram. In
this paper, we present a new method to pool the local shape descriptors into a global shape descriptor by means of
sparse representation. Firstly, we employ heat kernel signature (HKS) to depict the multi-scale local shape. Then,
for each model in the training dataset, we take the HKSs corresponding to its mesh vertices to serve as training
signals, and thus an over-complete dictionary can be learned from them. Finally, the HKSs of each 3D model are
sparsely coded based on the learned dictionary, and such sparse representations can be further integrated to form
an object-level shape descriptor. Moreover, we conduct extensive experiments on the state-of-the-art benchmarks,
wherein comprehensive evaluations state our method can achieve better performance than other bag-of-words
based approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

3D shape retrieval of plentiful models shared on the Inter-
net has been gaining momentum. The shape descriptors are
especially important to discriminate shapes, and have signif-
icant influence on the retrieval accuracy.

Recently, more and more researchers have focused their
investigations on non-rigid 3D shape analysis. Non-rigid ob-
jects are very common in the real world. The most challeng-
ing problem in non-rigid 3D shape matching is to maintain
invariance to various geometrical changes. Unfortunately,
rigid shape analyzing techniques [SMKF04] usually tend
to recognize such shape changes as different kinds of ob-
jects. With the recent progress of isometry-invariant local
shape descriptors, the bag-of-words (BoW) framework has
been exploited to integrate a model’s local shape descrip-
tors into a global shape descriptor [LGB∗11]. The BoW
framework is state-of-the-art to the retrieval of images and
meshes [DK12]. It starts with the computation of a set of
representative vectors named as geometric words. And then,
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hard or soft assignment [GGVS08] is utilized to compute
the distribution of geometric words, resulting in a word his-
togram as the global shape descriptor.

Heat diffusion is an elegant mathematical tool that is well
suitable for the analysis of non-rigid 3D shapes. Heat ker-
nel signature (HKS) [SOG09] has achieved great success
with increasing popularity in geometry processing, primar-
ily because of its built-in advantages such as being robust,
multi-scale, informative, and invariant to isometric transfor-
mations. HKS has been widely studied in non-rigid 3D shape
retrieval. For example, Ovsjanikov et al. [OBBG09] defined
a compact shape descriptor based on HKS and utilized the
BoW framework to generate a global shape descriptor. Bron-
stein et al. [BK10] proposed a scale-invariant heat kernel sig-
nature (SI-HKS) comprising the magnitudes of the Fourier
transform, and they also used the BoW framework to con-
struct a global shape descriptor.

In this paper, we propose a novel sparse representation
based framework to pool a 3D model’s local descriptors into
a global shape descriptor. Taking the improved HKS as lo-
cal shape descriptors, we can learn a redundant descriptor
dictionary from the training dataset. Each local descriptor
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can be further approximated by sparse coding, and then, the
sparse representations of all local shape descriptors are in-
tegrated over the entire shape to form a global shape de-
scriptor. To the best of our knowledge, although sparse rep-
resentation has many successful applications in image pro-
cessing [Ela10], it has been seldom used to analyze 3D
shapes. Specially, Abdelrahman et al. [AEMF12] proposed a
sparse representation based global descriptor called SRCP-
TD for non-rigid shape retrieval. For each model, they firstly
detected some critical points and concatenated their shape
signatures to serve as the global shape descriptor, wherein
sparse representation is used to reduce the dimensionality
of the global shape descriptor. In sharp contrast, our central
idea is to sparsely code all the local shape descriptors of a
3D model, because naively detecting critical points does not
work for some common cases (e.g., stained or mutilated 3D
models). So our approach is more robust than theirs.

2. Related work

With a point heat source at x on the surface X , the HKS
[SOG09] can be defined as

h(x, t) =
∞
∑
i=0

e−λit
φ

2
i (x),

where λi and φi are the i-th eigenvalue and eigenfunction of
the Laplace-Beltrami operator ∆X .

Ovsjanikov et al. [OBBG09] defined a compact shape de-
scriptor by sampling the HKS in time t = α

i−1t0. It is an
n-dimensional descriptor vector p(x) = (p1(x), · · · , pn(x))T ,
whose elements are

pi(x) = c(x)h(x,αi−1t0), i = 1, · · · ,n.

They determined the constant c(x) by the constraint
‖p(x)‖2 = 1, and set t0 = 1024, α = 1.32, n = 6 in the exper-
iments. In this paper, we denote it as C-HKS to distinguish
it from other HKS extensions.

Bronstein et al. [BK10] presented a scale-invariant heat
kernel signature (SI-HKS). They defined a function to turn
the shape scaling into a time-scale shift, and then took the
discrete-time Fourier transform (DFT) magnitude to elimi-
nate this time-shift. In [KBY12], by sampling the HKS in
time t = β

τ and denoting the HKS as h(τ) = h(x,βτ), they
proposed a new definition as h̃(τ) = d

dτ
lnh(τ), and took its

DFT modulus |H(ω)| as a local shape descriptor. Then, the
first six frequencies of |H(ω)| were selected as a compact
descriptor in their experiments.

3. Global shape descriptor based on sparse
representation

The goal of sparse representation is to represent a given sig-
nal by the linear combination of a small number of atom
signals in an over-complete dictionary. Based on this theory,
we propose a framework to extract a global shape descriptor,

which is called Sparse Representation of HKS (SCHKS).
As shown in Figure 1, the framework has two main steps:
one is to learn the over-complete dictionary from the train-
ing dataset with the K-SVD algorithm [AEB06], the other is
to integrate the local shape descriptors of a 3D model into a
global shape descriptor.

Figure 1: Overview of our framework

3.1. Local shape descriptors based on the HKS

Considering the good properties of the HKS, we modify it
to fit our framework. Compared with the dimension of a
signal, the sparsity should be small enough to ensure the
convergence of the K-SVD algorithm. However, since the
C-HKS and SI-HKS are both computed at only 6 scales,
it is hard to determine a suitable sparsity. We set the sam-
pling time for two reasons: 1) to get a longer shape de-
scriptor; 2) to be adaptive to the global scaling. Therefore,
for each 3D model, we compute the first N eigenvalues and
eigenvectors, and then sample n points over the time inter-
val [tmin, tmax] with tmin = |4ln10/λN |, tmax = |4ln10/λ2|.
In [SOG09], they explain that the HKS with t > tmax remains
almost unchanged and the HKS with t < tmin needs to com-
pute more eigenvalues and eigenvectors. The sampling time
can be formulized as

ti = eµi , i = 0, · · · ,n−1,

where µi = ln tmin+(ln tmax− ln tmin)i/(n−1). And then, for
a point x, we get a vector h(x) = (h(x, t0), · · · ,h(x, tn−1)).
Finally, after normalized to unit L2 length using f(x) =
h(x)/‖h(x)‖2, the local shape descriptor f(x) is ready for
the subsequent steps. The adaptive sampling time and the
normalization can collectively guarantee to be invariant to
global scaling.

3.2. Dictionary learning

The HKS descriptors are computed at all the vertices on each
model from the training dataset, and are taken as the training
signals. The K-SVD algorithm is used to train a dictionary
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from given example data, and has shown excellent perfor-
mance in many image processing tasks [TF11]. The algo-
rithm accepts a matrix F whose columns are training sig-
nals, the atom signal number K and a sparsity threshold T ,
and aims to iteratively improve the dictionary to achieve the
sparser representations of the training signals by solving the
optimization problem

min
D,Γ
‖F−DΓ‖2

2 Subject To ∀i ‖γi‖0 ≤ T,

where Γ is the matrix containing all the sparse representa-
tions of training signals, γi is the i-th column of the matrix
Γ, and D is a learned dictionary whose columns are atom
signals.

We utilize an efficient implementation of the K-SVD al-
gorithm proposed by Rubinstein [RZE08] for good time ef-
ficiency. The implementation replaces the exact SVD com-
putation with a much quicker approximation and uses the
Batch-OMP method for performing the sparse-coding oper-
ations. Orthogonal Matching Pursuit (OMP) [PRK93] is a
greedy algorithm to achieve the sparse representation of a
signal. The Batch-OMP algorithm is specifically optimized
for sparse-coding large sets of signals over the same dictio-
nary.

3.3. Global shape descriptor

Considering that many 3D models consist of as many as tens
of thousands of vertices, we still adopt the Batch-OMP algo-
rithm. For all the vertices of each model, we change the spar-
sity threshold to T + 1 and compute the sparse coefficients
of their HKS descriptors.

Next, to avoid being sensitive to the variation of mesh tes-
sellation, we take the area weight a(x) of the vertex x into
account while integrating the sparse representations of lo-
cal shape signatures over the entire shape X , and construct a
global shape descriptor g(X) which is a K×1 vector

g(X) =
∫

X
γ(x)da(x).

At last, we perform a normalization step as follow

g′(X) = g(X)/‖g(X)‖2.

Each element of g′(X) represents the contribution of the
corresponding atom signal to the global descriptor. Using
this descriptor, the dissimilarity between two shapes X and
Y can be defined as a distance between g′(X) and g′(Y ) in
RK , e.g., the L1 distance

d(X ,Y ) = ‖g′(X)−g′(Y )‖1.

4. Results

In order to assess our global shape descriptor (SCHKS), we
compared it with two BoW approaches (BoWC-HKS and

BoWSI-HKS) in which C-HKS and SI-HKS are used as
local shape descriptors, respectively. In these approaches,
the cotangent weight approximation was used to compute
the Laplace-Beltrami operator. For C-HKS and SI-HKS, the
number of geometric words was set to be 48 as in [BK10].
For C-HKS, we used t=1024,1351,1783,2353,3104,4096 as
in [OBBG09]. For SI-HKS, we used a logarithmic scale-
space with base β = 2 and τ ranging from 1 to 25 with in-
crements of 1/16, and took the first six discrete frequencies
(these are setting identical to [BK10]). We used the code pro-
vided by Bronstein [Bro] to compute C-HKS and SI-HKS.
The code provided by Sun [SOG09] is modified for fitting
SCHKS.

We evaluated the retrieval performance based on
precision-recall curves as well as the following five quantita-
tive measures (see [SMKF04] for details): Nearest Neighbor
(NN), First Tier (FT), Second Tier (ST), E-Measure (E), and
Discounted Cumulative Gain (DCG).

4.1. Shape retrieval on non-rigid 3D watertight meshes

Our method was firstly tested on 3D watertight meshes. The
experiments were on two shape benchmarks: SHREC 2010
non-rigid 3D shape benchmark [LGF∗10] and SHREC 2011
non-rigid 3D shape benchmark [LGB∗11]. They only con-
tain watertight triangle meshes that are equally classified.
The former with 200 meshes is partitioned into 10 classes,
and the other with 600 meshes is classified into 30 cate-
gories. To create the training dataset, we selected the first
two models from each class due to the classification file of
each benchmark. We carried out evaluations not only on the
average performance of the whole benchmark, but also on
the result corresponding to each specific class.

For SHREC 2010 non-rigid 3D shape benchmark, we
adopted four groups of parameters for SCHKS, which can
all guarantee the convergence of the K-SVD algorithm. In
Table 1, the superscripts of SCHKS denote different selec-
tions of parameters, which are also in use in the following
tables and figures. As shown in Table 1, the four groups of
parameters for SCHKS get very close retrieval accuracies,
and SC3

HKS performs best among them. Moreover, we can
see that it is better to use N = 300 eigenvalues and eigenvec-
tors to approximate the heat kernel than N = 100, because
the number of vertices ranges from 2000 to 30000 in this
benchmark. Therefore, we used N = 300 for C-HKS and SI-
HKS too. From Table 1 and Figure 2, we can find that our ap-
proach clearly outperforms BoWC-HKS and BoWSI-HKS.
Figure 3 displays the precision-recall curves measured for all
classes. Our approach obtains the best results when search-
ing for most of classes but not hand, spider and teddy.

For SHREC 2011 non-rigid 3D shape benchmark, we
have unexpectedly found that the scales of the 3D models are
so small that they have bad effects on C-HKS and SI-HKS.
According to the descriptions in Section 3.1, too large sam-
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Figure 3: Precision-recall curves for all the classes in SHREC 2010 non-rigid 3D shape benchmark

Table 1: Evaluations on SHREC 2010 non-rigid 3D shape
benchmark

Method NN FT ST E DCG
SC1

HKS 0.965 0.736 0.873 0.630 0.924
SC2

HKS 0.945 0.754 0.865 0.626 0.920
SC3

HKS 0.975 0.786 0.899 0.653 0.942
SC4

HKS 0.980 0.756 0.856 0.621 0.929
BoWSI-HKS 0.840 0.548 0.711 0.501 0.827
BoWC-HKS 0.785 0.343 0.549 0.366 0.716
SC1

HKS: N = 300, n = 15, K = 50, T = 3
SC2

HKS: N = 100, n = 15, K = 50, T = 3
SC3

HKS: N = 300, n = 50, K = 100, T = 3
SC4

HKS: N = 300, n = 15, K = 50, T = 4

pling time will result in unchanged HKS. Thus, all the sam-
pling time for C-HKS and a considerable part for SI-HKS
are inappropriate, so that C-HKS can no longer act as local
shape descriptors and SI-HKS can only lead to poor retrieval
performance. We still used N = 300 for SI-HKS. In Table 2,
our approach is compared with BoWSI-HKS and SRCP-TD.
Figure 4 shows the precision-recall curves. From them, we
can conclude that our approach achieves better performance
than BoWSI-HKS and SRCP-TD in this benchmark.

Several approaches presented in [LGF∗10] and [LGB∗11]
have better performance than ours. But they can only deal
with watertight meshes. Our approach is more robust be-
cause it can also deal with non-watertight meshes. We will
show the results in the next section.

Figure 2: Precision-recall curves for SHREC 2010 non-
rigid 3D shape benchmark

Table 2: Evaluations on SHREC 2011 non-rigid 3D shape
benchmark (We cited the best retrieval performance of
SRCP-TD in this benchmark from [AEMF12])

Method NN FT ST E DCG
SC1

HKS 0.993 0.906 0.951 0.702 0.977
BoWSI-HKS 0.362 0.170 0.259 0.175 0.504

SRCP-TD 0.978 0.811 0.900 0.660 0.947
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Figure 4: Precision-recall curves for SHREC 2011 non-
rigid 3D shape benchmark

4.2. Retrieval Robustness

Most meshes are not watertight in the real world. SHREC
2011 robust shape benchmark [BBGO11] is provided for
evaluating the retrieval performance on a large-scale dataset.
In this benchmark, the meshes without watertight constraints
have a wider variety of transformations. The transformations
of a shape are split into 12 classes shown in Figure 5.

Figure 5: Transformations of a human shape: null, isome-
try, topology, noise, shot noise, holes, microholes, sampling,
rasterizing, missing parts, view, affine and scale. (cited from
[BBGO11])

Because of no classification file of the whole benchmark,
we only used its training dataset containing 684 shapes. The
12 original shapes were taken for training. We put a shape
and its 56 transformations into the same class, and got 12
classes. Table 3 reports five quantitative statistics on the av-
erage performance, comparing our approach with two BoW
approaches. We notice that SC2

HKS performs better than
SC1

HKS this time. It is because the minimum number of
vertices is 300 in this benchmark, so N = 300 is too large
for computing the heat kernel. Therefore, we used N = 100
for C-HKS and SI-HKS as in [BBGO11]. Our approach still
get better performance than BoWSI-HKS and BoWC-HKS.
Similar observations can be made from Figure 6.

4.3. Running time

All the experiments in this section were carried out using
MATLAB R2010b on a machine with 2.6GHz dual-core
CPU and 3GB RAM.

Table 3: Evaluations on SHREC 2011 robust shape bench-
mark

Method NN FT ST E DCG
SC1

HKS 0.845 0.513 0.615 0.501 0.827
SC2

HKS 0.857 0.513 0.623 0.498 0.828
BoWSI-HKS 0.709 0.366 0.504 0.349 0.750
BoWC-HKS 0.636 0.341 0.509 0.315 0.732

Figure 6: Precision-recall curves for the SHREC 2011 ro-
bust shape benchmark

We firstly measured the time of the HKS computing for
all the vertices on a 3D model. Table 4 shows the results for
three models (T186, T78 and T130) from SHREC 2010 non-
rigid 3D shape benchmark. For each model, we computed
100 or 300 eigenvalues and eigenvectors, and sampled 15 or
50 points over the time. From the results, we find that the
time cost is much lower when using N = 100, and is only
slightly increased by sampling more points.

Table 4: Time for computing the HKS

#vertices N = 100 N = 300
n = 15 n = 50 n = 15 n = 50

5160 3.8s 3.9s 19.4s 19.6s
10348 11.7s 12.2s 41.6s 42.2s
23547 34.1s 34.4s 101.5s 102.0s

Table 5 shows the time of dictionary learning after 20 iter-
ations, corresponding to the different size of training signal
matrix F.

We selected the same models as in the HKS comput-
ing experiment. Table 6 shows the time for constructing the
SCHKS.
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Table 5: Time for training the dictionary

Benchmark #F K-SVD
SHREC 2011 non-rigid 15×263045 69.7s
SHREC 2010 non-rigid 15×561984 148.3s

SHREC 2011 robust 15×18049 4.5s

Table 6: Time for constructing the global descriptor

Model #F Time
T186 15×5160 0.04s
T78 15×10348 0.07s
T130 15×23547 0.19s

5. Conclusions

In this paper, we have presented a sparse representation
based framework to integrate local shape descriptors into a
global shape descriptor for non-rigid 3D shape retrieval. The
key idea is to sparsely code all the HKSs of a 3D model over
a learned dictionary. Under a certain sparsity constraint, the
representation of HKS only use a few representative atom
signals, and it is good for forming a more distinguished
global shape descriptor. Our framework is possible to ap-
ply other local shape descriptors for non-rigid 3D shape re-
trieval. However, we note that the parameters should not be
selected blindly, and they should guarantee the convergence
of the K-SVD algorithm. In addition, using a few samples
from each class for dictionary leaning may give rise to the
incomplete dictionary for some classes, which will be stud-
ied in the future.
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