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Abstract. While displacement maps can provide a rich set of visual detail on
otherwise simple surfaces, they have always been very expensive to render. Ren-
dering has been done using ray-tracing and by introducing a great number of
micro-polygons. We present a new image-based approach by showing that ren-
dering displacement maps is sufficiently similar to image warping for parallel
displacements and displacements originating form a single point. Our new warp-
ing algorithm is particularly well suited for this class of displacement maps. It
allows efficient modeling of complicated shapes with few displacement mapped
polygons and renders them at interactive rates.

1 Introduction and Motivation

Displacement mapping as introduced by Cook provides rich geometric and visual detail
without requiring the user to model them explicitly [6]. In contrast to other texture
mapping techniques, not only the appearance of a surface is altered, but the surface
itself is displaced by an amount specified in a texture map.

While displacement mapping reduces the burden on the modeling side, it increases
the effort necessary to obtain images from the model. Little published work exists on
the rendering of displacement mapped surfaces [13] and two approaches are commonly
taken: micro-polygons and ray-tracing. Both of these methods are very time consuming
and, therefore, more efficient alternatives are desirable.

This paper introduces such an alternative by making the observation that displace-
ment mapping is sufficiently similar to warping an image with depth. The pixel colors
describe the optical surface properties and the depth specifies how much the surface de-
viates from the image plane. These displacements can either be applied perpendicular
to the normal of a flat surface using an orthographic projection, or they can be made to
emanate from a single point — namely the center of projection in a perspective image.
Image warping takes the displaced surface points to the same location in the image as
first displacing them in 3D and then projecting them onto the image plane.

Current warping algorithms have difficulties in reconstructing the final image, both
in regions of depth discontinuities and where the object’s surface was not sufficiently
sampled. We introduce a novel warping algorithm that overcomes these problems for
the case of images representing displacement maps. In this restricted family of images,
depth differences in adjacent pixels are always meant to represent a surface slope, and
therefore, must be treated as being connected.

We begin with a discussion of previous work on rendering displacement maps and
warping depth images. Next, we describe how the epipolar geometry relating two im-
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ages can be exploited to implement an efficient warping algorithm well suited for dis-
placement maps. Our interactive system allows the user to cover arbitrary geometry
with displacement maps. For rendering, these displacement maps are warped into the
final image and composited using a depth buffer, which handles displacement mapped
geometry efficiently in traditional scan-line renderers. We then present images and
performance measurements in the results section. Finally, we discuss limitations and
possible extensions for more general shading.

2 Previous Work

Since the introduction of displacement maps in 1984 by Cook [6], they have been ren-
dered using micro-polygons [7] and using ray-tracing [13, 19, 24]. By subdividing
displacement-mapped geometry into micro-polygons and displacing their vertices, a
great deal of additional geometry is introduced that makes the model time-consuming to
render. A fine subdivision is usually necessary to capture the details of the displacement
map. The only system capable of doing this described in the literature is the REYES
image rendering architecture [7], but it suffers from additional problems if the displace-
ments excessively increase the size of the triangles. Ray-tracing is a costly rendering
technique in itself and ray-tracing inverse displacement maps has been described as only
being practical for objects of the complexity of tori or sweeps [13]. The authors of [13]
expect the rendering time for more complex surfaces “to become prohibitive.” Pharr et
al. have presented an approach to handle micro-polygons in ray-tracing [20, 21].

Image-based rendering (IBR), on the other hand, is very efficient for detailed scenes
because its algorithmic complexity is independent of the complexity of the rendered
scene. The complexity is determined by the number of samples in the reference images
and the desired images. IBR evolved from re-projections of environment maps for
perspective viewing [3], via image interpolation [4], to image warping [16].

There are two strategies in image warping: forward mapping and backward map-
ping. Forward mapping loops over the pixels in the reference image and projects each
one into the desired image. Splatting can compensate for mismatches in the images’
sampling densities. Grossman provides an alternative solution [11]. Forward mapping
is usually preferred, because it can be implemented more efficiently. Backward map-
ping loops over the pixels in the desired image and finds the corresponding samples in
the reference image. Since the mapping is not invertible, a search must be performed.
The epipolar geometry limits the extent of this search adversely affecting its time com-
plexity [17]. Popescu has accelerated warping by parallelization [22].

Two approaches leading in the direction of our method have been published, namely
view-dependent texture mapping [8] and ray-tracing height-fields [1, 5, 10, 15]. De-
bevec uses stereo algorithms to obtain displacement maps for building facades, and
renders them with view-dependent texture mapping by blending between the images
taken from different view angles. Height-fields can be rendered efficiently by sweeping
a ray upwards in each pixel column of the image keeping track of how the intersection
with the terrain recedes into the distance.

3 Forward Image Warping

Assume points in the image space of a pinhole camera (as in [17] and shown in Figure 1)
are converted to 3D Euclidean space through multiplication by 3 by 3 matrixP as given
in Equation (1):
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Fig. 1. A pinhole camera with center of projectioṅCr.
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The forward warping Equation (2) takes samplesxr = (u, v) described by a color
and a disparityδ(xr) as its input (see Equation (3)). Equation (2) maps them from a
reference image (denoted by subscriptr) into a desired image (denoted by subscriptd,
see Figure 2). The workings of the forward warping equation are shown in Figure 3
(reproduced from [14]). The figure shows a cross-section of Figure 2 known as the
epipolar plane — the plane containing the two cameras’ centers of projection and the
3D pointẊ.
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Fig. 2. PointẊ as seen in the reference image and in the desired image.

Subjecting every samplexr to the warping equation will usually result in holes in
the desired image because of different sampling densities in the reference and desired
images. This is the main reason why inverse warping is desirable, as it makes sure that
every pixel in the desired image is computed.
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Fig. 3. Illustration of the forward warping equation in the epipolar plane.
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Fig. 4. Inverse warping: the epipolar line’s extent in the reference image.
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4 Inverse Image Warping

Two points in the reference image play an important role in which samples correspond
to a pixel in the desired image — the epipoleεr and the projection of the pixel’s point at
infinity ∞εr. They are determined by the viewing ray through a particular pixel in the
desired image. Their geometric interpretation is illustrated in Figure 4 and Equation (4).

εr = P−1
r (Ċd − Ċr) ∞εr = P−1

r Pdxd (4)

The epipoleεr is the intersection of the baseline connecting the two camerasĊr
and Ċd (also the ray’s origin) with the reference image plane. The point∞εr is the
projection of the ray’s point at infinity into the reference image. These two points
delimit the segment on the epipolar line, where the pointxr corresponding to the point
xd must lie (see Figure 4). The extent of this line segment must be searched to obtain
xr for every pixel in the desired image [17].

Our approach to inverse image warping (or backward mapping) differs from pre-
vious work [8, 14, 17] by making the observation that pointsxd on epipolar lines in
the desired image share the same corresponding epipolar line in the reference image.
Therefore, there is great coherence between the searches for corresponding points when
considering adjacent points along the epipolar line in the desired image [23].

This observation is inspired by the ray-casting of height-fields mentioned in the
previous work section [1, 5, 10, 15]. In “image-warping terminology,” height-fields
are orthographic reference images. As long as the viewing direction in the desired
image is horizontal, vertical pixel columns lie on epipolar lines in the desired image.
The coherence along them can be exploited by sweeping a ray upwards in every pixel
column, and the search for the intersection of the next ray’s pixel with the terrain can
start where the intersection for the last ray was found.

The same is true for warping the points along an epipolar line in an inverse warper.
Figure 5 shows how the rays through the points along an epipolar line scan the samples
in the reference image for correspondences. Instead of searching the complete seg-
ment betweenxr and∞εr for every pixel, a match is typically found within a bounded
number of steps starting from the match of the last pixel processed. Consequently, the
expected runtime complexity of inverse warping is reduced fromO(n3) to O(n2) for
n by n reference and desired images. Instead of warping individual samples we warp
epipolar lines as a whole.

5 Implementation

In order to warp a complete perspective image we need to cover the whole image with
epipolar lines. For this we locate the epipoles in both images (see Figure 6). Then we
trace epipolar lines from the border of the images towards the epipole in the case of
a true epipole (the baseline connecting the two cameras pierces the image plane from
the back) or from the epipole to the image border in the case of an antipode [9] (the
baseline pierces the image plane from the front).

There are nine regions (A-I) in and around the image where the epipole can lie. This
results in different numbers of image border-lines (a-d) that must be walked to cover
the desired image. Table 1 summarizes these cases and Figure 7 shows the case of the
epipoleεd in region I. We use Bresenham’s line rasterization algorithm to walk along
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Fig. 5. Rays scanning the displacement map of the reference image along epipolar lines in both
the reference and the desired image.
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Fig. 6. The family of epipolar planes through the baseline covers both the reference and desired
image with epipolar lines.
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Fig. 7. Covering a raster image with epipolar lines.
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the epipolar lines in the raster images [2]. In order to process every pixel in the desired
image only once, we mark the processed pixels with a flag.

εd in region A B C D E F G H I
border walks 2 3 2 3 4 3 2 3 2
borders c, d b, d, c b, d a, c, d a, c, d, b a, b, d a, c b, a, c b, a

Table 1. Different cases depending on which region contains the epipoleεd.
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Fig. 8. The four different cases of walking order along epipolar lines.

Figure 8 summarizes the four cases of the walking direction along epipolar lines
for both the reference image and the desired image. They are distinguished by the
homogeneous coordinate of the images’ epipoles (making the point an epipole or an
antipode). Figure 9 depicts the five cases when clipping the epipolar line to the reference
image results in a non-empty line segment. Notice how in some cases — a), b) and d)
— points outside the segment connectingεr and∞εr are considered. When warping
epipolar lines instead of individual points, the sign of the homogeneous coordinate of
∞εr can change along the line. In warping algorithms, which consider a single point
at a time different, the sign of∞εr’s homogeneous coordinates correspond to different
walking orders along the epipolar line in the reference image. This behavior is achieved
when warping whole epipolar lines by continuing to search for correspondences beyond
∞εr. A different sign of the homogeneous coordinate takes∞εr to the other side ofεr
along the epipolar line and the search must proceed in the other direction. However,
this is exactly the direction we have started with when the sign was still different.
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Fig. 9. Clipping the epipolar line to the reference image.

In order to know whether a correspondence ofxd with xr was found, a minimal
disparityminδ(xr) is determined from the warping equation. If the disparityδ(xr)
stored forxr is larger thanminδ(xr), then a correspondence exists. Otherwise the
search along the epipolar line must continue.

Once a correspondence has been found, we calculatexdw (the homogeneous co-
ordinate of the point in the desired image) and optionally convert it to depth using
Equation (3) so that the depth test can be carried out in the desired image. For a scene
entirely made up of displacement maps, disparity values can be compared instead.

6 Displacement Mapping by Image Warping

Displacement mapping by image warping is compatible with two classes of displace-
ment maps: height-fields (orthographic projections) and displacements originating from
a single point (perspective projections with the single point being the center of projec-
tion). Such displacement maps can be rendered using image warping. This is not as
severe a restriction as it sounds because the directions of the displacements are usually
irrelevant as long as the surface ends up at the desired 3D location. So even the dis-
placements for a free-form surface could be done in this way — only the displacements
may not always be in the direction of the surface normal. The restriction is that every
ray in the reference image must not have more than one intersection with the desired
surface. Otherwise, the surface will self-occlude and cause undesired rubber-sheets.

Figure 10 shows a simple example of how a displacement-mapped globe is built
from a sphere by displacing a cube with six perspective depth images. The center of
projection for all the six images is the center of the sphere and all the images have
horizontal and vertical fields of view of ninety degrees. From left to right Figure 10
shows the frusta of the six images positioned in the cube, the rays of the reference
images originating from the center of the sphere, the color image of the earth’s texture,
and the displacements.
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Fig. 10. An example of creating a displacement-mapped globe with six reference images. The
frusta of these perspective images are arranged as a cube.
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to
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Fig. 11. Covering a dragon head with displacement maps — the arrows point to the centers of
projection (COP). Both the texture (left) and the displacements (right) are shown for frusta a) –
c).
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Figure 11 illustrates how one would plan to cover the complex surface of a dragon
head with reference images in order to obtain displacement maps for a hand-full of
polygons. The upper left shows the head and a cross-section with three exemplified
frusta labeled a) through c). Their corresponding RGB images (left) and depth maps
(right) are shown in the rest of the figure. A total of sixteen reference images has been
used to cover the surface of the dragon head. Not all points of the displacement-mapped
polygon (the image plane) need to be used as samples. The required part is stenciled out
by considering only samples in front of the far plane of the view-frustum. The image
on the right of Figure 12 shows the polygons to be displaced into the dragon’s head (see
the color section).

7 Results

We implemented a program for the interactive placement of frusta on the surface of
arbitrary geometry and the warper described in sections 4 and 5. The renderer uses
the warper to map multiple displacement maps into the final image where they are
composited using a depth buffer.

7.1 Interactive Frustum Placement

Figure 12 shows two screenshots of the interactive program used to place frusta on the
displacement-mapped globe and on the dragon head (see color section). In this pro-
gram, the geometry is rendered using OpenGL and the frusta are created and modified
using the mouse. In the lower left corner of these images, the view obtained from the
current frustum is displayed to guide the user with editing the frustum. Sets of frusta,
together with the RGB and the depth images obtained from using them in a perspective
projection, can be saved to a file.

The warper distinguishes between pixels pertaining to an object or to the back-
ground by examining the associated disparity value: disparity values corresponding to
the far clipping plane of the frustum are the background pixels. This would allow us to
“paint” far disparity values over unwanted image sections in order to avoid the afore-
mentioned rubber-sheet artifacts. Currently, we do not exploit this possibility.

7.2 Warping Performance

Table 2 shows the performance of warping the reference images of our models taken at
resolutions of 128x128, 256x256 and 512x512 into desired images of the same size on
a 250 MHz R10000 processor. Note that in image warping for displacement mapping
the individual displacement maps cover only a small fraction of the desired image.
Therefore, restricting the epipolar line walk to those image sections will avoid a warping
cost directly related to the number of displacement maps used.

The table lists the warping performance for the views given in Figure 13 (in the
color section). Notice thatO(n3) growth in the rendering time does not occur when
increasing both the reference and desired image dimensions by a factor of two. In
practice, variations in the warping performance can occur due to the position of the
epipoles in the desired image as classified in Table 1. Also, the clipping of epipolar
lines and the rejection of epipolar lines for which no correspondence is possible in the
reference image account for some variation.
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Model Fig.13 ref. imgs. resolution time (sec)
128x128 0.0503

Torus top 6 256x256 0.2013
512x512 0.7752
128x128 0.0523

Globe n/a 6 256x256 0.2911
512x512 0.8362
128x128 0.0842

Dragon bottom 16 256x256 0.3218
512x512 1.2276

Table 2. Warping performance in seconds on a R10000 processor running at 250 MHz.

8 Conclusions and Future Work

In this paper, we described a method to achieve interactive rendering of displacement
mapped geometry by inverse image warping. The proposed warping algorithm is par-
ticularly suited for rendering displacement maps, because it always treats the samples in
the reference images as being connected. Epipolar geometry is exploited to reduce the
algorithmic complexity fromO(n3), in previously described inverse warpers, toO(n2)
making the performance comparable to forward warping.

Much work remains to be done in the field of obtaining the displacement maps of
interesting objects. Stereo algorithms could be applied to acquire displacement maps
for approximate geometry of real-world objects. 3D paint programs [12, 25] could be
used by artists to paint displacements directly onto simple geometry to increase their
visual richness, much in the way the terrain was created in the gameMyst [18].

In terms of shading, simply warping color values from the reference images into
the desired image restricts the lighting to be entirely static. We would like to apply
techniques such as deferred shading and shadow maps in order to obtain a more dy-
namic lighting. Further, the image quality could be improved by applying interpolation
schemes on the reference samples instead of picking the closest one.

We would also like to investigate whether avoiding a much denser sampling of the
images around the epipole could significantly speed up the warping. Squares centered
around the epipole could be used to define additional border lines from which epipolar
lines are traced only up to the next inner square allowing to trade denser sampling for
more frequent epipolar line setup.
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original geometry

Fig. 12.The system for interactive frustum placement: The main window shows the
object together with the frusta. One is highlighted for editing. In the lower left corner
the view obtained using this frustum is given. Left: displacement mapped globe.
Middle: Scanned dragon head from the Stanford 3D Scanning Repository.
Right: Polygons to be displaced into the dragon head (the image planes of the frusta).

Fig. 13. Comparison of images obtained from original geometry and from
warped reference images.

warped image

Image noise due to depth 
test conflicts caused by 
samples from different 
reference images.

Rubber−sheet effects due 
to inappropriate modeling: 
geometry doesn’t conform 
to heightfield assumption.
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