
EUROGRAPHICS 2015/ B. Bickel and T. Ritschel Short Paper

Pixel Merge Unit
Rahul Sathe1 and Tomas Akenine-Möller1,2

1Intel Corporation 2Lund University

Figure 1: Left: a frame from Heaven 3.0 running in our simulator, i.e., a ground truth image. Center: using our pixel merge
unit, the resulting image is nearly identical to the ground truth but with about 12% less shading. Right: scaled difference (100×)
between the left and the center. With higher tessellation settings for this frame, the reduction in shading goes up to about 15%.

Abstract
Multi-sample anti-aliasing is a popular technique for reducing geometric aliasing (jagged edges) and is supported
in all modern graphics processors. With multi-sampling anti-aliasing, visibility and depth are sampled more than
once per pixel, while shading is done only once per pixel per primitive. Although this significantly reduces the
appearance of jagged edges around object boundaries, the image quality improvement in non-silhouette regions
is hardly noticeable. We propose a hardware unit, called the pixel merge unit, which is located just after the early
depth test unit but before the pixel shader. Our unit attempts to reduce the shading rate to once per pixel per group
of connected primitives covering a pixel using a novel merging strategy. We demonstrate up to 15% reduction in
pixel shader executions. Given the simple implementation that we propose, this is a substantial reduction.

1. Introduction

For high-performance graphics, it is essential to innovate in
the space of more efficient hardware algorithms for each new
generation of graphics processors. However, the same holds
for mobile phones and tablets, where more and more perfor-
mance is desired at the same or less power usage. Interest-
ingly, power reductions are also crucial for discrete and inte-
grated GPUs. Since a large portion of the power in a graphics
processor is due to pixel shading [Poo12], a reduction here
will, more or less, translates directly to power reductions and
performance improvements.

To provide high image quality at a relatively low cost,
multi-sampling anti-aliasing (MSAA) [Ake93] performs
shading computations only once per pixel per primitive,
while visibility and depth are computed at a higher rate.
Within a pixel, MSAA uses the same calculated color for
all the samples covered by that primitive. The pixel shader
units are followed by the output merger (OM) unit. The OM
is responsible for blending and it works on a per-sample ba-
sis. After the main shading pass, a resolve pass averages the
colors at every sample within a pixel and displays the result.

MSAA improvements are highly noticeable around the
object silhouettes, where typically there are color disconti-
nuities in addition to depth discontinuities. However, even
though MSAA produces different colors for neighboring
primitives for internal edges (not silhouettes), typical color
variation is minimal and hardly noticeable after the resolve
pass. We exploit this key observation by proposing a unit, lo-
cated before the pixel shader stage, that merges partially cov-
ered fragments within the pixel boundary with the fragments
from connected neighboring primitive(s). In other words,
pixel shading of partially covered fragments is deferred un-
til their neighbors arrive and the pixel becomes fully cov-
ered, in which case, our pixel merge unit saves a consider-
able amount of work.

2. Previous Work

In this section, we will only mention the most im-
portant work that is relevant to our research. Super-
sampling [FGH∗85] associates one visibility sample with
one shading sample, and computes the shading at every sam-
ple location within a pixel. Although this generates the best-
looking images, it is also the most expensive technique.

c© The Eurographics Association 2015.

DOI: 10.2312/egsh.20151013

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20151013

Rahul Sathe & Tomas Akenine-Möller / Pixel Merge Unit

MSAA [Ake93] is a less expensive version, as described
in the introduction. More recently, Direct3D 11.1 has intro-
duced target independent rasterization as a means to achieve
the image quality of MSAA without forcing color and depth
buffers to have high resolutions. Jouppi and Chang [JC99]
presented the Z3 algorithm, which samples visibility at a
higher rate and allocates a small list of fixed number of
fragments per pixel. When the list overflows, fragments are
merged using a heuristic to minimize artifacts. The per-pixel
list can be replaced with a dynamic linked-list [LK00], much
like a real A-buffer [Car84]. Kerzner and Salvi [KS14] pro-
posed a software solution to reduce the G-buffer generation
bandwidth by lossy compression of the surfaces covering a
pixel. Fatahalian et al. [FBH∗10] proposed a quad fragment
merging (QFM) unit that merges sparsely covered quad frag-
ments rasterized from a single primitive into a single densely
covered quad fragment before shading. While QFM is the al-
gorithm that is most similar to our research, it has some key
differences, which are discussed in the end of Section 3.

3. Algorithm

Before our algorithm is described, let us
define some common terms. A sample is a
location within a pixel where visibility and
depth/stencil are evaluated. A fragment is de-
fined as a portion of a triangle with non-zero
sample coverage within a pixel, and a quad fragment (QF) is
a 2×2-block corresponding to a fragment. The core idea of
our pixel merge strategy is to let the fragments that overlap
with a pixel center share its shading computed at that pixel
center to neighboring fragments that do not overlap with that
pixel center. A simple example is shown to the right with a
single pixel with four (yellow) visibility samples and a sin-
gle shading sample point (blue) in the center of the pixel. The
left triangle overlaps the pixel center, and so it computes the
shading there. The next triangle shares an edge with the pre-
vious triangle, and it overlaps two visibility samples but not
the pixel center. Normally, the second triangle would com-
pute new shading at the center of the pixel, but our algorithm
shares the pixel shading from the first triangle with the sec-
ond for these two samples. Note that our algorithm is only
applicable when MSAA is enabled. With MSAA disabled,
only the first triangle would have gotten shaded in the figure
above.

Our pixel merge unit (PMU) is located after the early Z-
test unit, but before the pixel shading unit. This can be seen
in Figure 2, where the PMU has been added to a standard
graphics pipeline. We impose the following restrictions on
when it is possible to share shading between two triangles,
where one triangle has computed shading at a certain pixel
center, and the second has not:

1. triangles must be facing the same way,
2. the triangles’ coverage may not overlap, and
3. the triangles must share an edge.

Rasterizer

Input primitives

Early Z

Shading Unit

Output Merger

Pixel Merge Unit

Figure 2: The gray units are parts in a standard graphics
pipeline. Our additions are marked in light blue, and the
connection between the Early Z and the (pixel) Shading Unit
has been grayed out, since it is replaced by the new, blue
connections.

Adjacency, i.e., whether two triangles share an edge, is
tracked using a pair of vertex identifiers. For tessellated tri-
angles within a patch, one can use the uv-coordinates. Alter-
natively, a bitmask, similar to the one proposed by Fatahalian
et al. [FBH∗10], could be used. However, that would require
the hardware tessellator to output the adjacency mask. To
track the adjacency across patches, one can use corner iden-
tifiers [SFS14]. A longer example of our algorithm in action
is illustrated in Figure 3.

We disable the PMU if the pixel shader has any of the
following:

1. discard instruction(s),
2. writes to unordered access views (UAVs),
3. writes to the depth,
4. alpha to coverage, or
5. uses the system generated primitive id or the coverage.

The reason for this is that the PMU is located before the
pixel shader, and the pixel shaders above may change the
outcome of whether the fragment passes or not, and in the
case of UAVs, it may not possible to know (statically) where
the output is written. For example, if the pixel shader writes
a custom depth, then the PMU cannot know whether the
fragment passes or not. Also, the coverage or the primitive
ids are different in the pixel shader if the merge is successful
and can result in very different shading.

Discussion Our algorithm is similar to quad fragment
merging (QFM) [FBH∗10] in the criteria used for merging,
but there are some important differences. The primary goal
of QFM was to avoid over-shading caused by the helper
pixels for micropolygons, whereas our primary goal is to
avoid shading along the internal edges for MSAA. We
merge fragments within the pixel boundary, while QFM
merges quad fragments over a 2 × 2 pixel region. Our
algorithm never picks up shading samples from more than
one primitive, while QFM can have shading samples from
up to four primitives. So QFM requires shader cores to
have large number of registers because it must be possible
to shade multiple primitives in one SIMD batch, which

c© The Eurographics Association 2015.

54

Rahul Sathe & Tomas Akenine-Möller / Pixel Merge Unit

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

0

1

2

3

4 5

60

1

2

3

4 5

0

1

2

3

4 5

0

1

2

3

4

0

1

2

3

0

1

2
Figure 3: Illustrating six connected triangles rendered one at a time to 2× 2 pixels with 4 samples per pixel (left to right).
Red arrows means that shading is computed at the center of a pixel (light blue circles), and is stored in the corresponding light
yellow samples. Green arrows indicate that samples “steal” their color from another triangle (where the arrow head points
on the sample being stolen). In the second figure (from left), one yellow sample is marked bold, indicating that it has not yet
obtained any color. The third figure shows how the shading is computed in the center of the pixel, and then one yellow sample
obtains that color (red arrow), and the bold sample from figure 2 then obtains that color as well (green arrow). Note that the
two yellow samples in figure five are also marked as not yet having obtained a color. In this entire example, only four quads will
be shaded with the PMU, which should be compared to six without, i.e., a 33% reduction.

the PMU does not need. Our logic to decide what shading
samples to use is simple, i.e., always use the pixel center
(covered or extrapolated). The QFM logic is substantially
more complicated. In their algorithm, derivatives for all the
surviving fragments can change after the merge, which can
result in incorrect mip-map level being used. In contrast, for
our algorithm the surviving fragments have correct deriva-
tives, only the coverage is different. However, the most
significant difference is that QFM targets micropolygons,
while we target medium- and large-sized triangles too.

4. Implementation

The PMU is implemented as a finite-sized FIFO merge
buffer where every entry corresponds to a quad containing
a partially covered fragment, along with the other informa-
tion about the fragment as shown below:

1 #define MAX_EDGES 8

2 struct Edge { unsigned int index1, index2; }

3
4 struct PMUEntry {

5 unsigned short x, y; // pixel location

6 unsigned int coverage[4]; // coverage

7 bool facing; // front or back

8 Edge outerEdges[4][MAX_EDGES];

9 ShadingInput s; // Shading Data

10 }

11
12 // Merge coverage only within a pixel (p)

13 Merge(PMUEntry e1, const PMUEntry e2, uint p) {

14 e1.coverage[p] |= e2.coverage[p];

15 MergeOuterEdges(e1, e2, p);

16 }

17
18 // For non-tesellated triangles

19 MergeOuterEdges(PMUEntry e1, PMUEntry e2, uint p) {

20 foreach (ed1 in e1.outerEdges[p])

21 foreach (ed2 in e2.outerEdges[p])

22 if (ed1.index1 == ed2.index2 &&

23 ed1.index2 == ed2.index1) {

24 RemoveEdge(e1, ed1, p);

25 RemoveEdge(e2, ed2, p);

26 }

27 AddEdges(e1, e2, p) // Adds e2 edges to e1

28 }

Only the quads with partially covered fragments enter into
the PMU along with the information listed in PMUEntry.

ShadingInput contains attribute data at the three triangle ver-
tices along with the barycentric coordinates at the pixel lo-
cation. The vertex data can be stored in a separate reference
counted buffer to reduce storage requirements further.

When the rasterizer generates the quads (fully or partially
covered), the PMU first checks whether the incoming quads
overlap with any quads in the PMU and evicts those in the
order they had entered the buffer. This ensures that all the
fragments always get rendered in the triangle submission or-
der for any given pixel. We restrict our merge to fragments
within a pixel. If no fragment in the quad is partially cov-
ered (even though the quad itself may be partially covered),
there will never be any merge. We do not buffer such quads
in the PMU. If the conditions (listed in Section 3) for the
merge are met, we perform the merge using the pseudocode
listed in Merge, such that the fragment covering the pixel
center (or the sample closest to the pixel center) is the one
that survives. Note that, a single quad fragment can result
in multiple merges, one for each fragment in the quad frag-
ment. After the merge, if all its fragments become fully cov-
ered or empty, there is no reason to wait for more merges.
We mark such a quad fragment for eviction and override the
FIFO policy. The merge buffer is flushed after every instance
of the draw call.

5. Results

We have evaluated our pixel merge unit (PMU) using a func-
tional simulator of the D3D11 pipeline, augmented with the
PMU. The scenes we have used are a set of representative
games and benchmarks. Heaven 3.0 has different tessellation
settings, namely, moderate (HeavenM), normal (HeavenN),
and extreme (HeavenE).

The goal of our technique is to reduce shading along in-
ternal edges to once per pixel per group of connected primi-
tives. We measure the total number of partially covered quad
fragments that get rendered, with and without our technique
for different finite-sized merge buffers. We call the ratio of
partially covered quads that we save to the total number of
partially covered quads, the efficiency of our scheme. This

c© The Eurographics Association 2015.

55

Rahul Sathe & Tomas Akenine-Möller / Pixel Merge Unit

0

10

20

30

40

50

60

70

32 64 128 256 512 1024 2048 4096

Merge Buffer Size

Efficiency (saved/eligible %) FarCry2

Hawx

Civ5

FarCry3

RE

L4D2

Sponza

PowerPlant

HeavenM

HeavenN

HeavenE

Average

Figure 4: Efficiency measures the percentage reduction in
the number of quads relative to the number of partially cov-
ered quads. Note that the partially covered quads also con-
tains the silhouette pixels which never get merged. Colored
lines show the PMU efficiency for individual titles and the
bold black line indicates the average.

metric is conservative in that, we also count the true sil-
houette quad fragments in our baseline. The silhouette quad
fragments must be shaded once per pixel per primitive. As
seen in Figure 4, the efficiency increases (up to 64%) with
larger merge buffer sizes, as expected. In Figure 5, the sav-
ings in percentage of total number of quads dispatched are
shown. Both the metrics start to level off when the merge
buffer has 512 entries. As expected, for scenes with smaller
triangles, we see larger savings because there are more edge
quads than internal quads. This is reflected in larger savings
for Hawx, for example. Similarly, we see savings increase
for Heaven as the tessellation rate increases from moderate
to extreme. On average, our PMU provides 8% savings for
512 entries.

Typically, hardware vendors employ some kind of com-
pression scheme for MSAA color buffers [RHAM07]. A side
benefit of our technique is that it tends to generate render tar-
gets that compress better. This is because all samples in the
pixels along the internal edges, where merges were success-
ful, have the same color. This directly translates to band-
width reduction. However, we did not measure this band-
width reduction, as it correlates to the shading reduction.
Also, in general, our image quality is very high, e.g., 48.57
dB for Heaven with extreme levels of tessellation.

Our algorithm also extends nicely to coarse pixel shading
(CPS) [VST∗14], which is a generalization of MSAA. For
a given buffer size and a screen resolution, the pixel shader
execution savings increase when using CPS. For the Power-
Plant scene with a merge buffer size of 64, for example, the
savings increase from 5.72% to 7.42% using CPS.

We have presented a simple hardware unit, the PMU, to
avoid unnecessary shading along internal edges. On average,
the PMU provides 8% savings in pixel shader work, but up
to 15% for some workloads. This is substantial, given the
simplicity of the unit, and will directly translate to increased
performance and lower power usage.

Acknowledgements Thanks to David Blythe and the Advanced

0

2

4

6

8

10

12

14

16

32 64 128 256 512 1024 2048 4096

Merge Buffer Size

Savings (saved/total %) FarCry2

Hawx

Civ5

FarCry3

RE

L4D2

Sponza

PowerPlant

HeavenM

HeavenN

HeavenE

Average

Figure 5: The percentage reduction in the number of quads
relative to the total number of quads that get shaded as a
function of number of entries in PMU. Colored lines indi-
cate the savings for individual titles and the bold black line
indicates the average reduction in pixel shading.

Rendering Technology group at Intel. Tomas Akenine-Möller is a
Royal Swedish Academy of Sciences Research Fellow supported by
a grant from the Knut and Alice Wallenberg foundation.

References
[Ake93] AKELEY K.: RealityEngine Graphics. In Proceedings of

SIGGRAPH 93 (1993), ACM, pp. 109–116. 1, 2

[Car84] CARPENTER L.: The A-buffer, an Antialiased Hid-
den Surface Method. In Computer Graphics (Proceedings of
SIGGRAPH 84) (1984), vol. 18, ACM, pp. 103–108. 2

[FBH∗10] FATAHALIAN K., BOULOS S., HEGARTY J., AKE-
LEY K., MARK W. R., MORETON H., HANRAHAN P.: Re-
ducing Shading on GPUs using Quad-Fragment Merging. ACM
Transactions on Graphics, 29, 4 (2010), 67:1–67:8. 2

[FGH∗85] FUCHS H., GOLDFEATHER J., HULTQUIST J. P.,
SPACH S., AUSTIN J. D., BROOKS JR. F. P., EYLES J. G.,
POULTON J.: Fast Spheres, Shadows, Textures, Transparencies,
and Image Enhancements in Pixel-Planes. In Computer Graphics
(Proceedings of SIGGRAPH 85) (1985), vol. 19, ACM, pp. 111–
120. 1

[JC99] JOUPPI N. P., CHANG C.-F.: Z3: An Economical Hard-
ware Technique for High-Quality Antialiasing and Transparency.
In Graphics Hardware (1999), pp. 85–93. 2

[KS14] KERZNER E., SALVI M.: Streaming G-Buffer Com-
pression for Multi-Sample Anti-Aliasing. In High Performance
Graphics (2014), pp. 1–7. 2

[LK00] LEE J.-A., KIM L.-S.: Single-pass Full-screen Hardware
Accelerated Antialiasing. In Graphics Hardware (2000), ACM,
pp. 67–75. 2

[Poo12] POOL J.: Energy-Precision Tradeoffs in the Graphics Pipeline.
PhD thesis, 2012. 1

[RHAM07] RASMUSSON J., HASSELGREN J., AKENINE-
MÖLLER T.: Exact and Error-Bounded Approximate Color
Buffer Compression and Decompression. In Graphics Hardware
(2007), pp. 41–48. 4

[SFS14] SATHE R., FOLEY T., SALVI M.: Post-Tessellation Ge-
ometry Caches. In Eurographics 2012 – Short Papers (2014),
pp. 57–60. 2

[VST∗14] VAIDYANATHAN K., SALVI M., TOTH R., FOLEY T.,
AKENINE-ML̈LER T., NILSSON J., MUNKBERG J., HASSEL-
GREN J., SUGIHARA M., CLARBERG P., JANCZAK T., LEFOHN
A.: Coarse Pixel Shading. In High Performance Graphics (2014),
pp. 9–18. 4

c© The Eurographics Association 2015.

56

