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1. Experiments and Evaluations

We evaluate the ability of our method to cope with point clouds
at different scales, which results in a different point density on the
z-buffer image. In Figure 1, we show that our method provides the
most consistent results across the different methods we compared
to.

1.1. Fine Details

One limitation of our method is the attention to fine details, this
is due to three main reasons. First, representing shapes as points
is inherently prone to miss fine details, as points are a type of dis-
crete sampling of the continuous surface. This can be seen in the
surface reconstruction results in Figure 2, compared to the ground
truth mesh. Second, convolutional neural networks tend to output
smooth results, this effect is also encouraged by the MSE loss our
network is trained with, as this loss aims at achieving the aver-
age visualization result. Third, the natural shapes our method
was trained on mainly contain low frequency surfaces, while high
frequency fine details are rare. In Figure 3 we test our method on
four different spheres. Each sphere is modulated with spherical har-
monics with increasing frequency. The increasing frequency of the
spherical harmonics represents details with decreasing granularity,
and demonstrate our method’s robustness towards fine details. As
expected, when the frequency is high enough, our method visual-
izes the sphere as a smooth surface due to the above reasons.

2. Architecture

Our image2image model is a modified U-NET fully convolutional
network. The modifications are as follows:

AdaIN layers. We swap out the batch-norm layers in favor of
AdaIN layers. Through the AdaIN layers we inject the rendering
controls such as color and light position. First, the control vec-
tor is mapped through the mapping network to a latent represen-
tation of size 512. Then, the latent representation is passed through
a learnable affine transformations that maps the 512 latent repre-
sentation to the AdaIN primary input feature size, which depends
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Figure 1: Robustness to number of point samples. For an increas-
ing number of point samples in the point cloud, our method is most
consistent in the final rendered result.

on the depth of the network as well as the number of convolution
kernels in the previous layer. The affine transformation is a required
such that the resulting vector can be passed as a secondary AdaIN
parameter dimension-wise. This flow is depicted in Figure 5.
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Figure 2: Comparison on the Lion head model. Fine details are
smoothed out, a similar effect as seen in Figure 3.
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Figure 3: Results on point clouds with varying amounts of details,
to demonstrate detail robustness limitation. Each sphere is modu-
lated with spherical harmonics with increasing frequency. As the
frequency increases, more details smooth out, up until the highest
frequency where the harmonic modulation is not visible in our vi-
sualization.

Mapping Network. The mapping network is a simple fully con-
nected network, that maps between the input control vector to a
latent representation of size 512. The control vector is nominally of
size 6 i.e. 3 elements for color in RGB format, and 3 elements for
light position in the form of r,θ,φ with respect to the camera. In the
extra material control experiment in the paper, the control vector
was extended to be of size 8, with two extra input features between
0−1 for Metallic and Roughness attributes.

Positional Encoding. We also include extra input features to
each pixel, that correspond to the pixel’s position in the input im-
age. This requires making the input feature size larger, specifically

Figure 4: Our result on a real Lidar scanned cube, scan provided
by AIM@SHAPE-VISIONAIR.

Figure 5: Diagram depicting the flow of information from the con-
trols vector, through the mapping and affine layers, and lastly to the
AdaIN layer. Each normalization layer has a different target feature
size, determined by the previous convolution layer, and accordingly
a matching affine mapping layer to that target size.

the number of positional encoding arguments plus one for the point
z-buffer.

3. Training Details

Our model is implemented in Pytorch. Both training and testing
were done on a single Nvidia RTX 2080 GPU. Training was per-
formed with the ADAM [KB14] optimizer, and a learning-rate of
2e−4.
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Figure 6: Our method rendering results at different scales of the input. Note that our method was trained on meshes normalized to a single
scale.
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Figure 7: Comparison to [HMGC20]. As point to mesh is also able
to produce good results, it requires a long time to converge (30-60
minutes), compared to our result that is obtained in seconds.
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Figure 8: Results of rendering different planes and cars generated
by [YHH*19].
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Figure 9: As our network is able to render single view point clouds
as they were meshes fast, it can be used together with a lidar scan-
ner to visualize a reconstruction of a scan live. In this project, hu-
man hands were scanned with a lidar scanner to make specialized
casts. Our method allows for a fast visualization of the cast in dif-
ferent color for the patient to choose from. In blue are the actual
points that were scanned from the arm.

Figure 10: As our network predicts an alpha map that models shad-
ows for each image, we can blend the generated results with arbi-
trary backgrounds. The point cloud in this figure was generated
by [YKH*18].
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Figure 11: Sweep over the metallic and roughness controls, compared to the ground truth rendering of the mesh with blender.
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