
EG UK Theory and Practice of Computer Graphics (2011)
Hamish Carr, Ian Grimstead (Editors)

Memory efficient surface reconstruction based on self 
organising maps

P. Kaye and I. Ivrissimtzis

Abstract
We propose a memory efficient, scalable surface reconstruction algorithm based on self organising maps (SOMs).
Following previous approaches to SOM based implicit surface reconstruction, the proposed SOM has the geometry
of a regular grid and is trained with point samples extracted along the normals of the input data. The layer by
layer training of the SOM makes the algorithm memory efficient and scalable as at no stage there is need to hold
the entire SOM in memory. Experiments show that the proposed algorithm can support the training of the very
large SOMs that are needed for richly detailed surface reconstructions.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

The modelling pipeline for creating a 3D model of a real
world object starts with the data acquisition. In this stage, a
scanning device collects geometric information from the sur-
face of the object. Usually, the obtained data have the form
of multiple range scan images, which are then registered and
geometric information is extracted. The geometric data takes
the form of an unorganised point set, possibly with normals,
which can be further processed to remove noise and outliers.
Finally, in a process called surface reconstruction a surface
model of the data is created, usually in the form of a trian-
gular mesh.

One of the most widely used and successful branches of
surface reconstruction algorithms is based on implicit sur-
face representations. Implicit methods first compute a scalar
field f

f : R3→ R (1)

where the value f (v) of a point v ∈ R3 is taken to repre-
sent the signed distance between v and the surface. Under
this assumption, the surface is the set of points satisfying
f (v) = 0, while f itself is treated as an implicit represen-
tation of the surface. Usually, f is computed by solving a
global optimisation problem and, its form is typically an ag-
gregate of several implicit functions, each one modelling a
small neighborhood of the input point set. Approximate so-
lutions to the global optimisation problem can be efficiently
computed, sometimes by just solving a sparse linear system.
Finally, a triangular mesh approximation of the surface can

be extracted from the zero-level set of f , using an algorithm
such as the Marching Cubes [LC87].

The popularity of the implicit methods is mainly due to
their robustness. Indeed, implicit methods seem to be par-
ticularly well suited to deal with the noisy, unevenly sam-
pled point sets that are the typical outputs of optical scan-
ning devices. Moreover, intensive research activity on im-
plicit methods has yielded some very fast, computationally
efficient algorithms.

On the other hand, the extra third dimension of the im-
plicit surface representation may increase the memory re-
quirements of an implicit surface reconstruction algorithm.
Memory efficiency problems are dealt with by employing
flexible data structures, such as adaptive octrees, however,
these complicate the algorithms and increase the implemen-
tation overheads. A second drawback of the implicit ap-
proach is that the required global optimisation may affect
the scalability of the algorithm. Scalability issues are ame-
liorated by making the locally fitting implicit functions have
compact support. However, even though their compact sup-
port means that, in principle, the global optimisation prob-
lem can be solved locally, in a small neighbourhood of the
data, it is nontrivial to implement this in a computationally
efficient way.

In this paper we extend the work in [YIL08, KI10],
proposing an implicit reconstruction algorithm based on a
self organising map (SOM). Following [YIL08], the SOM
has the connectivity of a 3D regular grid. Its nodes can be

c© The Eurographics Association 2011.

DOI: 10.2312/LocalChapterEvents/TPCG/TPCG11/025-032

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG11/025-032


P. Kaye and I. Ivrissimtzis / Memory efficient surface reconstruction based on self organising maps

Figure 1: The SOM is trained layer by layer, starting from
the bottom and going up. The already trained nodes are
shown in green. The nodes currently being trained are in
red. The nodes to be trained are in gray.

seen as a regular, discrete sample from the inside of a bound-
ing box of the input point set. Each node stores a scalar value
representing the signed distance between the node and the
surface, and it is trained with data sampled from the normals
of the input point set.

The proposed algorithm extends [KI10] by having the di-
mensions of the SOM adapt themselves to the data provided.
Most importantly, the SOM is trained layer by layer, and
never stored entirely in memory at any given time, see Fig. 1.
Given the ordered, rather than random nature of the training,
fewer samples need to be taken from the point cloud to en-
sure a smooth reconstruction.

Any trained layer can be passed to the Marching Cubes
algorithm for polygonisation or saved to disk without need-
ing to wait for the completion of the SOM training. As a
result, the algorithm is memory efficient without needing an
adaptive data structure, and it is scalable without needing
a technically involved localisation of a global optimisation
problem. Taking this approach one step further, each layer
of the SOM can also be trained at stages, in this case line by
line, leading to further memory efficiencies at the expense of
higher computational costs.

1.1. Contributions and limitations

The main contributions of the paper are:

• A SOM based, memory efficient, scalable implicit surface
reconstruction algorithm.

• A demonstration that the proposed algorithm and a simple
modification of the Marching Cubes algorithm can make
surface reconstruction memory efficient and scalable, al-
lowing for the reconstruction of very fine triangle mesh
representations of the input data.

The main limitations of the paper are:

• a preprocessing of the data, in the form of sorting them
according to their z-coordinate is required.

• the difficulty of mathematically modelling the process and
thus deriving provable properties of the reconstructed sur-
faces.

1.2. Overview

The rest of the paper is organized as follows. In Section 2
we briefly review the literature on surface reconstruction. In
Section 3 we present the main algorithm of layer by layer
implicit SOM training. In Section 4 we present the results of
the validation of the algorithm on smooth input data and the
testing of the algorithm on raw data. In Section 5 we discuss
the implementation of the line by line training of SOM layers
and present the results of a proof of concept experiment. We
briefly conclude in Section 6.

2. Related work

Over the years, several surface reconstruction algorithms
suitable for computer graphics applications have been pro-
posed. [HDD∗92, TL94, CL96] are significant examples of
early reconstruction algorithms that pioneered the field. In
our review of the subsequent research, we first look at two
major techniques based on Delaunay tetrahedrisation and
moving least squares (MLS) fitting, respectively, then review
the implicit and the SOM based methods that are most re-
lated to this paper.

Delaunay tetrahedrisation has been repeatedly used for
surface reconstruction [ABK98, ACK01, MAVdF05]. As-
suming that the faces of the Delaunay tetrahedrisation give a
superset of the reconstructed surface, these algorithms use
geometrically intuitive criteria to decide which faces are
not part of the surface and remove them, leaving a mani-
fold polygonal mesh. Unfortunately, they can be sensitive to
poorly sampled data and higher levels of noise.

Algorithms based on the MLS projection form another
major branch of surface reconstruction [AK04, RJT∗05].
They are the most successful instance of point-set surfaces,
where the surface is implicitly defined as the set of the fixed
points of a projection, in this case the MLS projection. In
a similar approach, [LCOLTE07] use the median projection
which does not require local parameterisations of the point
set.

Implicit surface reconstruction methods usually require
points with normals as inputs [CBC∗01,TO02,OBS04]. Us-
ing a standard technique, the input data are assigned a scalar
value of 0, the ends of the normals pointing to the exterior of
the surface are assigned value 1, while the opposite normal
ends are assigned value -1. These values are interpolated or
approximated by local or global scalar fields, which are then
blended to create a single global scalar field approximating

c© The Eurographics Association 2011.

26



the signed distance to the surface. Finally, the surface is ex-
tracted as the zero-level set of the scalar field. Implicit meth-
ods perform well when presented with poorly sampled data,
but interpolating algorithms are not robust in the presence of
noise. Implicit methods also have significant difficulty rep-
resenting surfaces with boundaries.

Several surface reconstruction algorithms are based on
SOMs and their variants. SOMs have been used for grid
fitting in [BF01] and for surface reconstruction in [Yu99].
In [Fri93,IJS03], special types of SOMs called Growing Cell
Structures, that dynamically create edges between nodes, are
used for the same problem. Unfortunately, the growing cell
structures required the entire point cloud to be sampled sev-
eral times in order to achieve a stable result.

Surface reconstruction is still a very active research area
with many recently proposed algorithms employing a vari-
ety of geometric, statistical and signal theoretic techniques.
[NRDR05] combines separately acquired positional and nor-
mal information. [KMA06] processes dense point sets ob-
tained from multiple scans with a variant of the image pro-
cessing technique of super-resolution. [KBH06, BKBH09]
solve a Poisson equation, which is used for comparison later
in the paper.

3. Main Algorithm

In this section we describe the main algorithm and discuss
some implementation details. The input of the algorithm is a
point set with normals. If the point set has no normals then
we can estimate them using some of the standard methods in
the literature.

The SOM is arranged in the form of a regular 3D grid
with the nodes on the lattice Z3. That is, each node has inte-
ger coordinates and the length of each edge is 1. Each node
stores an estimation of its signed distance from the surface,
d̄. The edges provide no information and can be completely
ignored since neighborhood relations for the nodes of the
grid are obtained by direct means such as distances between
nodes.

The SOM has a band of active layers, in which each node
stores a list L of weighted distances from the surface, which
is obtained through training, d̄ computed as a weighted aver-
age of the elements of L and represents the current estimate
for the value of the implicit function at that node. Only nodes
in this active band are trained. The active band moves from
the base to the top of the SOM, training it.

When fully trained, the SOM represents a discrete implicit
description of the surface that can be triangulated using the
marching cubes algorithm [LC87]. Even though each node
only passes its value d̄ to the marching cubes algorithm, the
list of weighted distances L provides information about ear-
lier states of the SOM, which can be used for fine-tuning or
analysis of the results. It also provides some robustness to

noisy input data or misaligned normals of the type that are
common when processing data from optical scanners.

3.1. Data alignment and sorting

In the first step of the algorithm, we find a tight rectangular
bounding box for the input point set and align it to the SOM.
Using a standard technique for the efficient computation of
a bounding box, we apply Principal Component Analysis on
the input point set and use the three principal components as
the axes of the box. Next, by an affine transformation fol-
lowed by scaling we map the bounding box and the data
into the convex hull of the SOM grid. In the labelling of
the axes we choose the z-axis to be the the largest principal
component ensuring that the base of the SOM is as small
as possible, affording us the smallest memory requirement.
The point cloud is analysed and its maximal and minimal x
and y values found. The SOM then configures its dimensions
accordingly. Finally, the point set is sorted by z-coordinate,
low to high.

3.2. Training Step

The basic training step of the SOM runs as follows:

1. A sample s is extracted from the point set.
2. Training data are created from the sample as shown in

Fig. 3.2. The training data extend a distance of ±2 units
from the sample and carry their distance from the sample,
and a weight (computed as 1/(1+ d2

s )) where ds is the
distance from the original sample, s.
The weight of a training point represents our confidence
that its distance from the surface is accurate, this might
not be the case if two areas of the surface are close to
each other, or if there is another sample point closer to
the training point than s.

3. For each training point, the nearest SOM node is found,
this node has the weight and distance of the training point
added to its list of distances, L.

Samples are extracted sequentially and are assumed to lie
on the surface, i.e. we assume that their distance from the
surface is 0.

3.3. Smoothing

The estimated signed distance d̄ from the surface of every
active node is found by computing the weighted average of
the elements in its distance list. The nodes to be smoothed
are then subjected to the following procedure.

1. Using the natural L0 metric of the SOM grid, the L0(1)
neighbours of node n are found. If n has no trained neigh-
bours, it is not smoothed. Otherwise, the mean of the d̄’s
of the trained neighbours, m1, is computed.

2. Similarly to above, the L0(2) neighbours are found. If
there are less than two trained L0(2) neighbours then n is

c© The Eurographics Association 2011.

27P. Kaye and I. Ivrissimtzis / Memory efficient surface reconstruction based on self organising maps



Figure 2: The grey area represents the interior of the sur-
face. Red points are training data with negative distances
from the surface, blue points are those with positive dis-
tances, and the green points have distance zero.

not smoothed. Otherwise, the mean of the trained neigh-
bours, m2 is computed.

3. Finally, n has the distance 0.65m1 + 0.35m2 added to its
distance list with a weight of 1.0. Weights of 0.65 and
0.35 were experimentally determined to work well for a
variety of data.

The z-coordinate zs of the latest sample is stored when the
smoothing phase is entered. Upon subsequent sample extrac-
tions, the new sample’s z-coordinate is compared to this zs
and if the difference is more than a fixed amount, the SOM
is smoothed again, and zs is updated. Initially, zs holds the
z-coordinate of the first sample taken.

The bottom two layers of the active band are not smoothed
because the computed distance would not include contribu-
tions from the L0(1) and L0(2) neighbours with the lowest
z-coordinates and so would lead to biased smoothing.

The smoothing does not go all the way to the top of the
active band, the z-coordinate of the latest sample point to
be extracted, zs, is used to calculate an upper limit: no node
is smoothed if the distance between its layer and zs is less
than 2. Similarly to the restriction at the bottom of the ac-
tive band: layers very close to the top would be unlikely to
have trained upper neighbours, which could lead to biased
smoothing.

3.4. Storing

If the z-coordinate of any sample point is within 2 units of
the top of the active band then it triggers a dumping of the
bottom 2 layers. The data for these layers is saved to a file (or
it could be directly passed to the marching cubes algorithm),

and the active band moves 2 layers in the positive z direction.
The memory for the two formerly active layers is then freed,
helping to keep the memory consumption within reasonable
bounds.

3.5. Parameter choice

Setting the height of the active band to 20 nodes resulted to
good quality surfaces without using large amounts of mem-
ory.

The training data extend 2 units from their sample point
in the direction of the normal, and in the same distance the
opposite direction. This distance was chosen because only
nodes close to the surface will have any effect on its geom-
etry when the marching cubes is run. Consequently, train-
ing nodes further away would increase the memory require-
ments for no benefit. This is also the distance to the top of
the active band that triggers storing since to have a sample
closer than 2 units to the top of the active band would mean
its training data extending beyond the top.

Given that training data extend ±2 units from the sam-
ple points, nine training data were created per sample. This
was to ensure that nodes were consistently trained but not
over-trained. Consider an axis-aligned sample point: creat-
ing 9 training data ensures that the inter-point distance is 0.5
units. Training data are applied to the nearest node, and this
would make sure that each node is trained exactly once by
the sample. A more sparse set of training data would lead to
gaps (and thus inconsistent distances) and a denser set would
result in each node being trained with multiple inconsistent
distances.

The length of the weighted distance list is constrained to
provide a bound on the memory that can be used. Each node
can store a maximum of 100 weighted distances. This was
chosen to be long enough to tolerate noise (because the ef-
fect of the other distances dwarfs that of the noise) but short
enough to keep memory within sensible limits.

4. Results

At each stage of testing, the proposed algorithm was com-
pared to [KI10] and [KBH06]. It should be noted that
[KBH06] produced smoother meshes than the other two al-
gorithms.

We first validate the proposed algorithm by testing
it on point sets obtained by stripping the connectivity
from smooth meshes. We used the neptune, turbine blade,
happy buddha and dragon meshes. By comparing the re-
reconstructed meshes with the original meshes, which serve
as the ground truth for the underlying surface of the point
data, we are able to gauge the accuracy of the method. Fig-
ure 3 shows the obtained reconstructions and Figure 4 shows
close-ups of the reconstructions.

Next, we tested the surface reconstruction algorithm on

c© The Eurographics Association 2011.

28 P. Kaye and I. Ivrissimtzis / Memory efficient surface reconstruction based on self organising maps



Figure 3: Re-reconstructions from smooth meshes. The orig-
inal meshes are on the left, reconstructions on the right.

unprocessed point sets from raw range scan data, in par-
ticular the Bunny data from Stanford repository and the
Ramesses data from AIM@SHAPE. The normals for the
Ramesses model were computer from the raw mesh provided
by AIM@SHAPE (using MeshLab) as the weighted average
of incident face normals. Figure. 5 shows the obtained re-
constructions. Figure. 6 shows a close-up of the Ramesses
reconstruction.

Figure 4: Close-up of Neptune’s face, reconstructed from a
mesh.

To validate the memory efficiency claim, memory con-
sumption was monitored during the reconstruction of the
models (whose sizes are shown in Table 1). The average and
peak memory use for each model are displayed in Tables 2
and 3 respectively. An “X” in any table indicates that the
algorithm was not able to run to completion on a PC with
4GB of RAM. A detailed breakdown of timings for the pro-
posed method is shown in Table 4 and the total run-time for
each model and method are shown in Table 5. The marching
cubes implementation used was not able to extract the isosur-
face of the huge neptune model due to insufficient memory.
The number of triangles in each model after reconstruction
by each method is shown in Table 6.

The neptune model was reconstructed at a variety of
scales, with the timing recorded. The results are shown in
Figure 7 as a function of the volume of the point cloud’s
bounding box, or equivalently the number of SOM nodes.
All other parameters were kept constant for these reconstruc-
tions to ensure that only the scale affected the results. As can
be seen, the timing scales almost linearly with the volume of
the bounding box.

model bounding box points
buddha 140×122×300 543’652
dragon 185×235×299 437’645
turbine 495×463×598 882’954
neptune 302×694×1001 2’003’931
huge neptune 2112×4858×7004 2’003’931
bunny scans 130×209×210 362’272
ramesses 224×318×645 826’266

Table 1: The dimensions of each point cloud’s bounding box
in the x,y and z directions, along with the number of points
in each cloud.

c© The Eurographics Association 2011.

29P. Kaye and I. Ivrissimtzis / Memory efficient surface reconstruction based on self organising maps



Figure 5: Reconstruction from scan data. The mesh supplied
from the Stanford 3D Scanning Repository is on the left, the
reconstruction is on the right.

Figure 6: Reconstruction from scan data. The mesh supplied
from AIM@SHAPE is on the left, the reconstruction on the
right.

The peak RAM use reported in [OBA∗03] when recon-
structing the buddha, dragon and bunny scans was 442MB,
210MB and 110MB respectively. Carr et. al. reported a
peak RAM use of 306MB to reconstruct the dragon and
291MB to reconstruct the buddha from the same point
clouds [CBC∗01].

5. Line by line SOM training

If further memory efficiency is required then the SOM can
be modified to be trained line by line, as shown in Figure 8.
After the initial preprocessing and sorting, the points within
the range (z,z+1), for integral z, are sorted low to high (left
to right) by their y-coordinate. In this case the active band
becomes an active line, which has fixed size in both the y
and z directions.

model average average average
(proposed) [KI10] [KBH06]

buddha 16 933 173
dragon 20 1260 81
turbine 48 X 144
neptune 54 X 205
huge neptune 1633 X X
bunny scans 18 623 73
ramesses 29 X 19

Table 2: The average memory use of the reconstructions in
Megabytes.

model peak peak peak
(proposed) [KI10] [KBH06]

buddha 23 1209 173
dragon 24 1721 253
turbine 71 X 384
neptune 112 X 312
huge neptune 1772 X X
bunny scans 20 885 178
ramesses 38 X 90

Table 3: The peak memory use of the reconstructions in
Megabytes.

5.1. Implementation

Inactive nodes are stored in temporary files, and like the
layer by layer reconstruction, cannot be trained. If the z-
coordinate of any sample point is too close to the top of the
SOM, the SOM dumps these layers and moves in the posi-
tive z direction.

Similarly, if the y-coordinate of any sample point is too
close to the rightmost edge of the active line, the leftmost 2
rows of nodes are stored in temporary files (including their
distance list) and the active linemoves to the right. When the
SOM has been trained with all the sample points in a layer
(indicated by yn+1 < yn) the SOM stores the current state
of all active nodes in the temporary files and the active line
jumps back to the left.

The temporary files are read to determine the state of the
nodes when they were last active. The training then contin-
ues as before, but whenever the SOM moves right, it reads
the states of the now-active nodes from the temporary files.

Using an active line with a height and width of 30 nodes
resulted to good quality surfaces and low memory use. A
larger value was used compared to the height of the ac-
tive band to take into account that smoothing the active line
would propagate the training information less than in the
active band. Smoothing can be triggered by z-coordinate
changes, as in the layer by layer reconstruction, or by y-
coordinate changes.

c© The Eurographics Association 2011.

30 P. Kaye and I. Ivrissimtzis / Memory efficient surface reconstruction based on self organising maps



model preprocessing training polygonisation
time (s) time (s) time (s)

buddha 12 45 5
dragon 10 38 6
turbine 19 227 40
neptune 50 302 57
huge neptune 51 ∼8 hrs X
bunny scans 9 21 3
ramesses 20 120 19

Table 4: Timings for the different stages of the proposed al-
gorithm.

model recon. (s) recon. (s) recon. (s)
proposed [KI10] [KBH06]

buddha 62 142 163
dragon 54 159 220
turbine 286 X 366
neptune 409 X 400
bunny scans 33 98 50
ramesses 159 X 39

Table 5: The total run-time for each algorithm, including
any preprocessing and isosurface extraction.

5.2. Results

The current implementation of the line by line SOM training
is basic and cannot handle large input data sets. However,
proof of concept results on small data sets show significant
memory savings. For example; when the Ramesses model
(scaled to 112×159×322) was reconstructed, the mean and
peak memory consumption were only 2.4MB and 2.5MB re-
spectively. On the other hand, the time taken to complete the
reconstruction was 44 minutes (148’495 triangles). The re-
constructed model is shown in Figure 9.

6. Conclusions

We presented an implicit surface reconstruction algorithm
based on self organising maps. The main novelty of our ap-
proach is the layer by layer training of the SOM’s nodes,
which means there is no need to store the entire SOM in
memory at any stage. The memory efficiency of the algo-
rithm compared to [CBC∗01, OBS04, KBH06] and [KI10]
was demonstrated. Good sized SOMs, such as those used
for the reconstructions of Neptune and the turbine, require
about 100MB peak memory, while even the massive SOM
used for reconstructing the huge Neptune model can be ac-
commodated in the memory of a commodity PC.

The second major advantage of our approach is its scala-
bility. Not only can the training of the SOM be done layer
by layer, but, in a recursive application of this principle, a
layer can be trained line by line. The preliminary results of
this line by line training are promising. If further memory

model triangles triangles triangles
(proposed) [KI10] [KBH06]

buddha 182’421 343’501 629’208
dragon 247’751 436’873 856’976
turbine 1’600’242 X 1’359’064
neptune 1’070’264 X 1’403’528
bunny scans 128’884 221’166 211’930
ramesses 577’923 X 111’980

Table 6: The number of triangles for each method.

Figure 7: Time taken to reconstruct the neptune model vs.
the volume of its bounding box.

efficiency is needed, a line could be trained thick point by
thick point, see Fig. 10.

We note that memory efficiency and scalability are natural
features of our approach and can be achieved with minimal
implementation overheads. In contrast, memory efficiency
in other implicit reconstruction methods requires the imple-
mentation of complex data structures, such as adaptive oc-
trees, or the use of special scalable algorithms for solving
global optimisation problems.

The regular structure of the SOM employed by the pro-
posed algorithm, and the very simple processing operations
performed at each node, make the method particularly suit-
able for GPU implementation. In the future, we plan to work

Figure 8: In a recursive application of the layer by layer
training principle, a layer can be trained line by line.

c© The Eurographics Association 2011.

31P. Kaye and I. Ivrissimtzis / Memory efficient surface reconstruction based on self organising maps



Figure 9: Line by line reconstruction from scan data. The
layer by layer reconstruction is on the left, and the lower-
resolution line by line reconstruction on the right.

Figure 10: A line could be trained thick point by thick point.

on a GPU implementation of the algorithm which, together
with existing GPU implementations of the marching cubes
algorithm [JC06], could be a step towards the goal of real
time surface reconstruction.

Source code is available for [KI10], [KBH06] and the pro-
posed algorithm under a BSD licence.

References

[ABK98] AMENTA N., BERN M., KAMVYSSELIS M.: A new
voronoi–based surface reconstruction algorithm. In SIGGRAPH
(1998), pp. 415–422. 2

[ACK01] AMENTA N., CHOI S., KOLLURI R.: The power crust,
unions of balls, and the medial axis transform. Computational
Geometry: Theory and Applications 19, 2-3 (2001), 127–153. 2

[AK04] AMENTA N., KIL Y. J.: Defining point-set surfaces.
ACM Trans. Graph. 23 (2004), 264–270. 2

[BF01] BARHAK J., FISCHER A.: Adaptive reconstruction of
freeform objects with 3D SOM neural network grids. In Pacific
Graphics (2001), pp. 97–105. 3

[BKBH09] BOLITHO M., KAZHDAN M., BURNS R., HOPPE H.:
Parallel poisson surface reconstruction. In Advances in Visual
Computing, vol. 5875 of Lecture Notes in Computer Science.
2009, pp. 678–689. 3

[CBC∗01] CARR J., BEATSON R., CHERRIE J., MITCHELL T.,
FRIGHT W., MCCALLUM B., EVANS T.: Reconstruction and

representation of 3D objects with radial basis functions. In SIG-
GRAPH (2001), pp. 67–76. 2, 6, 7

[CL96] CURLESS B., LEVOY M.: A volumetric method for build-
ing complex models from range images. In SIGGRAPH (1996),
pp. 303 – 312. 2

[Fri93] FRITZKE B.: Growing Cell Structures - a self organizing
network for unsupervised and supervised learning. Tech. Rep.
ICSTR-93-026, ICSI, Berkeley, 1993. 3

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD
J., STUETZLE W.: Surface reconstruction from unorganized
points. In SIGGRAPH (1992), pp. 71–78. 2

[IJS03] IVRISSIMTZIS I., JEONG W.-K., SEIDEL H.-P.: Using
growing cell structures for surface reconstruction. In SMI (2003),
pp. 78–86. 3

[JC06] JOHANSSON G., CARR H.: Accelerating marching cubes
with graphics hardware. In Proceedings of the 2006 conference
of the Center for Advanced Studies on Collaborative research
(2006), ACM. 8

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson sur-
face reconstruction. In SGP (2006), pp. 61–70. 3, 4, 6, 7, 8

[KI10] KAYE D., IVRISSIMTZIS I.: Implicit Surface Recon-
struction and Feature Detection with a Learning Algorithm.
Collomosse J., Grimstead I., (Eds.), Eurographics Association,
pp. 127–130. 1, 2, 4, 6, 7, 8

[KMA06] KIL Y., MEDEROS B., AMENTA N.: Laser scanner
super-resolution. In SoPBG (2006), pp. 9–16. 3

[LC87] LORENSEN W., CLINE H.: Marching cubes: A high res-
olution 3D surface construction algoritm. In SIGGRAPH (1987),
pp. 163–168. 1, 3

[LCOLTE07] LIPMAN Y., COHEN-OR D., LEVIN D., TAL-
EZER H.: Parameterization-free projection for geometry recon-
struction. ACM ToG 26, 3 (2007), 22. 2

[MAVdF05] MEDEROS B., AMENTA N., VELHO L.,
DE FIGUEIREDO L. H.: Surface reconstruction from noisy
point clouds. In Symposium on Geometry Processing (2005),
pp. 53–62. 2

[NRDR05] NEHAB D., RUSINKIEWICZ S., DAVIS J., RA-
MAMOORTHI R.: Efficiently combining positions and normals
for precise 3D geometry. In SIGGRAPH (2005), pp. 536–543. 3

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G.,
SEIDEL H.-P.: Multi-level partition of unity implicits. In SIG-
GRAPH (2003), pp. 463–470. 6

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: 3D scattered
data approximation with adaptive compactly supported radial ba-
sis functions. In SMI (2004), pp. 31–39. 2, 7

[RJT∗05] REUTER P., JOYOT P., TRUNZLER J., BOUBEKEUR
T., SCHLICK C.: Surface reconstruction with enriched reproduc-
ing kernel particle approximation. In SoPBG (2005), pp. 79–87.
2

[TL94] TURK G., LEVOY M.: Zippered polygon meshes from
range images. SIGGRAPH (1994), 311–318. 2

[TO02] TURK G., O’BRIEN J.: Modelling with implicit surfaces
that interpolate. ACM ToG 21, 4 (2002), 885–873. 2

[YIL08] YOON M., IVRISSIMTZIS I., LEE S.: Self-organising
maps for implicit surface reconstruction. In Theory and Practice
of Computer Graphics (2008), EG Press, pp. 83–90. 1

[Yu99] YU Y.: Surface reconstruction from unorganized points
using self-organizing neural networks. In IEEE Visualization
(1999), pp. 61–64. 3

c© The Eurographics Association 2011.

32 P. Kaye and I. Ivrissimtzis / Memory efficient surface reconstruction based on self organising maps




