
Eurographics Symposium on Geometry Processing 2022
M. Campen and M. Spagnuolo
(Guest Editors)

Volume 41 (2022), Number 5

Deterministic Linear Time for Maximal Poisson-Disk Sampling
using Chocks without Rejection or Approximation

Scott A. Mitchell

Center for Computing Research, Sandia National Laboratories, U.S.A.

ray

tangent

circle

chock

time

Po
is

so
n-

di
sk

 S
am

pl
in

g

c

Uniform Sampling

Figure 1: Upper left, a real-life yellow wheel chock; image courtesy https://safetyline.com.au. Upper center, our mathematical
“chock.” Upper right, we show how to perform uniform random sampling in a chock without rejection or approximation, in constant time per
sample. Lower, pipeline, this enables 2D maximal Poisson-disk sampling in deterministic linear time, which we name “Deterministic-MPS.”

Abstract
We show how to sample uniformly within the three-sided region bounded by a circle, a radial ray, and a tangent, called a
“chock.” By dividing a 2D planar rectangle into a background grid, and subtracting Poisson disks from grid squares, we are
able to represent the available region for samples exactly using triangles and chocks. Uniform random samples are generated
from chock areas precisely without rejection sampling. This provides the first implemented algorithm for precise maximal
Poisson-disk sampling in deterministic linear time. We prove O(n ·M(b) logb), where n is the number of samples, b is the bits
of numerical precision and M is the cost of multiplication. Prior methods have higher time complexity, take expected time, are
non-maximal, and/or are not Poisson-disk distributions in the most precise mathematical sense. We fill this theoretical lacuna.

CCS Concepts
•Mathematics of computing → Distribution functions; • Computing methodologies → Rendering; • Theory of computation
→ Randomness, geometry and discrete structures;

1. Introduction

Blue-noise is defined by the Fourier spectrum of points’ pairwise
distance vectors. Such distributions have random point placement,
but no two points are too close together. This avoids bias and alias-
ing artifacts in images, and is efficient because there are no re-
dundant samples. Poisson-disk sampling is valued in graphics be-

cause it generates distributions close to blue-noise. There are other
ways to generate blue-noise, but Poisson-disks hold a special place
within the pantheon of sampling methods, for historical, practical
and theoretical reasons. Herein we restrict our attention to two di-
mensions, the most important case, but the community has some in-
terest in higher-dimensional Poisson disk sampling and blue noise.

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14606

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-3710-4500
https://safetyline.com.au
https://doi.org/10.1111/cgf.14606

Scott A. Mitchell / Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection or Approximation

Poisson-disk sampling is defined by the so-called Poisson-disk
process: points arrive uniformly at random at a fixed mean rate.
If a point falls within the disk around a prior point it is “cov-
ered” and rejected; else it is accepted. Maximal Poisson-disk Sam-
pling (MPS) continues this indefinitely until the entire domain is
covered. Unfortunately, there is no precise definition of the max-
imal Poisson-disk output distribution beyond following this pro-
cess. This is analogous to defining “sort” by the process of bubble
sorting, and not by the output being in ascending order. This has
made it difficult to efficiently generate distributions that are precise
maximal Poisson-disk samplings. To modify the procedure but still
generate true Poisson-disk samples, the only known mathematical
tools are the observation that the probability of the next point ap-
pearing in a particular uncovered subregion is proportional to the
area of the subregion, and how to model and update the explicit
arrival time of points.

2. Background

Inverse Transform Sampling. Sampling uniformly from a trian-
gle or rectangle is straightforward. For more complicated shapes
or distributions, Inverse Transform Sampling [Dev86] is a way to
transform a uniform random variable into one from the target distri-
bution. It relies on having a formula for the Cumulative Distribution
Function (CDF) of the target distribution. By definition, any area
formula is a CDF of the sample density for uniform-by-area sam-
pling. If u∈ [0,1] is a uniform random variable, then v=CDF−1(u)
is a random variable from the target. The typical challenge is invert-
ing the CDF. Our MPS algorithm is possible because we found a
way to do this for the area of a “chock:” a curved triangle bounded
by a circle, a ray, and a tangent; see Figure 1.

Precision Complexity. We consider the problem of ensuring the
process of generating MPS sample positions is accurate to b bits
of precision. Let M(b) be the cost of b-bit multiplication. Then
tan and arctan have time complexity O(M(b) logb). The surpris-
ing result that trig and exp functions have the same complexity as
their inverses results from the quadratic convergence of Newton’s
method, and using low-precision arithmetic for the first iteration
and doubling it every iteration. [Bre76, BZ10] In the same way, we
will show the area of a chock and its inverse are O(M(b) logb).

2.1. MPS Methods

We give a detailed review of specific features of related MPS meth-
ods, because our contribution hinges on replacing their approxima-
tions and probabilistic operations with precise deterministic ones.
We summarize these features in Table 1.

Many Poisson-disk sampling papers [Jon06, EPM∗11] have not
made the distinction between expected and deterministic runtime,
and have used O(·) notation regardless. Herein we distinguish de-
terministic “big O” O(·) running time vs. probabilistic expected
E(·) running time. For some algorithms the expected time is only
observed empirically, and not proven.

Dart-throwing [DW85] was the first proposed Poisson-disk al-
gorithm. It sequentially selects a sample location uniformly at ran-
dom over the whole domain, and rejects it if it lies inside the disk

of a prior sample. The arrival time of each sample is not modeled,
only their order, but it is equivalent to following the Poisson-disk
process with explicit arrival times. The implementation terminates
after a certain number of rejections are observed, without any guar-
antee of maximality, and the runtime is not described analytically.

The following algorithms avoid generating samples from the en-
tire domain and getting many rejections. Instead, they find the un-
covered region by subtracting the accepted samples’ disks from the
entire domain. They construct some representation of this curved
uncovered region, often a collection of triangles or squares. The
next sample is chosen uniformly by area from the shapes in that
representation. If the representation is an outer approximation (i.e.
superset) of the uncovered domain, then the next sample is rejected
if it lies outside the true uncovered domain. For an inner approxi-
mation (subset) no rejections occur, but the distribution is not pre-
cisely Poisson-disk, and some algorithms may terminate without
strict maximality.

v

Figure 3: The Voronoi region for a point v. The circle shows the radius by
which points must be separated in the Poisson Disk pattern. New points would
be allowed in the shaded area, which we call the free space for the Voronoi
region. The point v would receive weight in the binary tree W proportional to
the shaded area. The area is calculated by decomposing the Voronoi area into
a triangle fan and computing the shaded area in each triangle.

3.1 Generation of a new point

All of the described steps thus far are O(log N). It remains to be shown that
a new point in the free region of V can be generated in O(log N) time. This is
the key insight behind our algorithm.

We treat the Voronoi region of a point as a triangle fan centered at that
point. See figure 3. We first select one of the triangles in the fan at random
weighted by their respective free areas. Our strategy for uniformly generating
a random point in the triangle’s free area relies on a case analysis. See figure
4. Label the vertices of the triangle vc, v1, v2 with vc the central point of the
Voronoi region. We refer the reader to figure 4.

Case 1: One of v1, v2 is within R of vc. In this case, we compute the
intersection vi of v1v2 and the circle centered at vc. The triangle formed by
vc, vi and the farther of v1, v2 falls into case 4 below.

Case 2: v1v2 intersects the circle of radius R centered at vc in two
places. In this case, both intersections are computed, and two triangles that
fall into case 4 occur.

Case 3: The point of closest approach on v1v2 to vc is interior to v1v2.
In this case, the point of closest approach is computed, and two triangles that
fall into case 4 are formed.

5

cv

1v

2v
iv

cv

1v

2v
cv

1v

2v

cv

1v

2v

Case 1 Case 2 Case 3 Case 4

Figure 4: The four cases for a triangle in the Voronoi region. Cases 1, 2, and 3
all reduce to case 4 after subdivision. Shaded areas are trivial rejections after
subdivision.

cv

iv

j
v

kv

1v

2v

θ

Figure 5: Sampling from the quadrilateral v1v2vjvi has a better than 1
2 chance

of being outside the circle centered at vc. The line through vi, vk is the tangent
at the intersection point vi. v1 is the point of closest approach to vc on v1v2.

Case 4: The point of closest approach on v1v2 is one of v1, v2. In this
case, the intersections vi, vj of vcv1 and vcv2 with the circle are computed. A
random point is repeatedly generated uniformly within the quadrilateral formed
by these intersections and v1, v2, until such a point is at least R away from vc.
See also figure 5.

We must now show that case 4 terminates in O(log N) time with high prob-
ability. It su�ces to show that the probability that a random point uniformly
drawn from the quadrilateral is at least R distance from vc is > 1

2 .
We refer to the labels in figure 5. If a point is drawn uniformly from the

triangle defined by vi, vj , vk, the probability of it being more than R away from
vc is at least 2

3 , by the following argument. This probability is the ratio of
the area outside the arc dvivj to that of the triangle vi, vj , vk. Straightforward
trigonometry shows that this ratio is tan ✓�✓

tan ✓�sin ✓ , which is 2
3 when ✓ approaches

zero, and grows to unity at ✓ = ⇡
2 .

6

Figure 2: Left, Voronoi-MPS’s representation of the uncovered
area (shaded) by Voronoi cells with subtracted disks. Right, it de-
composes into triangles4vi jk containing chocks, and quadrilater-
als �vi12k. Images courtesy Jones Figures 3 and 5. [Jon06]

Voronoi-MPS, “Efficient Generation of Poisson-Disk Sampling
Patterns” [Jon06] was the first method to generate precise Max-
imal Poisson-disk distributions with expected E(n logn) running
time. Voronoi-MPS partitions the remaining uncovered region by a
Voronoi diagram of the accepted samples. It subtracts sample disks
from a Voronoi cell, and partitions it into quadrilaterals and chocks;
see Figure 2. Each chock is outer approximated by the triangle of
its vertices. Voronoi-MPS first selects a polygon uniformly by area,
then generates a sample within it uniformly by area. If it is a quadri-
lateral, the sample is always accepted. If it is a triangle and the sam-
ple falls outside the chock, then the sample is rejected and one must
start over at the top by selecting another polygon. A chock’s area
is always a large fraction of its enclosing-triangle’s area. Hence the
chance of a rejection is bounded above by a constant. The entire
running time is E(n logn). The logn arises from constructing the
Voronoi diagram and from selecting a polygon uniformly by area.

GridOuter-MPS, “Efficient Maximal Poisson-Disk Sam-
pling” [EPM∗11] uses a uniform background grid instead of
a Voronoi decomposition. The sample regions are squares with
disks subtracted, scooped-squares. An outer approximation to each
scooped-square is used for selecting the next subregion, and for
rejection sampling within it; see Figure 3. Thus, as with Voronoi-
MPS, the output is a maximal Poisson-disk sampling in the strictest
sense, and the runtime is E(n logn), not deterministic.

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

102

Scott A. Mitchell / Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection or Approximation

method approx. Poisson-disks maximal expected time deterministic time precision complexity

Dart-throwing [DW85] outer Y - ∞ - 1
Scallop-MDS [DH06a] in - Y - n logn b+ logb
Voronoi-MPS [Jon06] outer Y Y n logn - 1
GridOuter-MPS [EPM∗11] outer Y Y n logn - 1
Sequential-MPS [ours] - Y Y - n logn logb
Simple-MPS [EMP∗12] outer Y Y n† - 2b

GridInner-MPS [JK11] in Y‡ Y‡ - n 2b

ChockSubdivision-MPS [ours] - Y Y - n b+ logb
Deterministic-MPS [ours] - Y Y - n logb

approx. indicates whether samples are generated from an outer approximation (superset) of the uncovered domain, an inner approximation
(subset), or from it exactly up to numerical precision.
precision complexity means the cost of achieving an MPS within b bits of numerical accuracy.
The total complexity is a “time” column for n samples × the “precision complexity” column for b bits × the cost of b-bit multiplication.
Sequential-MPS is our version of GridOuter-MPS, using chock sampling without outer approximation and rejections.
† Simple-MPS linear runtime is empirical. The dependence on bits of precision is small empirically, but exponential in the worst case.
‡ GridInner-MPS approximates exclusion disks by enclosing polygons, whose number of sides trade runtime for precision.
Deterministic-MPS is our version of GridInner-MPS, using chock sampling without an inner approximation.

Table 1: Features of Poisson-disk sampling algorithms. Outer approximations lead to rejections and expected time. Inner approximations
lead to distribution deviations. In precision complexity, the 2b factors come from the magnitude of the geometric approximation. The b
factors come from binary search. The logb factors come from tan, arctan, or similar functions.

Covered
fraction
of polygon

Acceptable
sample
location

Figure 3: GridOuter-MPS’s scooped-square. Left, many methods
use a background grid of squares with diagonal length equal to
the Poisson-disk radius. This ensures only one sample can fit in a
square, and only 20 neighbor squares could intersect its disk. Right,
a polygon forms an outer approximation of a scooped-square. The
polygon is triangulated, and rejection sampling is performed. Im-
ages courtesy “Efficient Maximal Poisson-Disk Sampling” presen-
tation. [EPM∗11]

Scallop-MDS, “A Spatial Data Structure for Fast Poisson-Disk
Sample Generation” [DH06a] uses an advancing front to generate
a maximal disk sampling (but not a Poisson-disk one) in determin-
istic O(n logn) time. The next sample is chosen from an annular
neighborhood around previously accepted samples. Annuli are split
into scalloped sectors bounded by two rays; see Figure 4. The next
scalloped region is chosen uniformly by area. A sample is gener-
ated within it using an inverse CDF transform, without rejection. A
maximal distribution is achieved.

The CDF is the area A of a scalloped sector. A closed form for
A is not provided, let alone its inverse. Instead the area is partially

p1

p2
p3

Np1

Np2

Np3

Figure 6: A partial point set and its neighborhoods. The
dashed lines represent scalloped sector boundaries within a
region.

3 Boundary Sampling

In this section, we show how the algorithms described in the
previous section can be modified to avoid the complexity
of sector operations, thereby generating Poisson-disk point
sets in linear time extremely quickly. First, notice that it is
possible to generalize either A1 or A2 by introducing a annu-
lus radius factor ca to vary the outer radius of the annulus
defining the available neighborhoods, where 2 < car  4.
This modification does not change the structure or asymp-
totic performance of either algorithm, and we will assume
that they are parameterized by ca for the rest of the paper.

With this change, the available neighborhood is defined as

Np = D(p, car) �
p02P

D(p0, car), p0 < p
D(p0, 2r), p0 � p

.

Notice that the overall density of the generated point set
tends roughly to be inversely proportional to ca; this can be
exploited for applications such as randomized object place-
ment, in which it is desirable to tune the density of the point
set. Figure 7 graphs the density of a sample point set as ca

is varied.

A special case arises if ca is taken to be the minimum value
2. In this case, a point’s available neighborhood collapses
to a collection of circular arcs centered at the point. We
call these arcs the available boundary. By directly imple-
menting boundary sampling, we no longer need to represent
the available neighborhood as scalloped regions; instead, the
available boundary is represented as a set of per-point angu-
lar ranges at which a point can be placed on the boundary.

Additionally, if we select the new candidate point at random
instead of according to the length of its available boundary
(similarly to how we obtained the linear algorithm A2), it is
no longer necessary to explicitly store the neighborhoods for
every point already in the set. Once a candidate has been

Listing 2: Algorithm 1

def sample (rad iu s) :

pt = (random () , random ())

Npt = Annulus (pt , 2⇤ radius , 4⇤ rad iu s)

P = [pt]

C = {pt : Npt}
T = WeightedTree ()

T. i n s e r t (pt , Npt . area)

while C:

choose a random point in the

ava i l a b l e neighborhood

Np = choose (T, random ())

pt = Np. randomPoint ()

P. append (pt)

update the a va i l a b l e neighborhoods

of the new point and i t s neighbors

Npt = Annulus (pt , 2⇤ radius , 4⇤ rad iu s)

for n in . . . ne ighbor po in t s . . . :

Npt . subt rac tDi s c (n , 4⇤ rad iu s)

i f n in C:

C[n] . subt rac tDi s c (pt , 2⇤ rad iu s)

i f C[n] . isEmpty () :

C. remove (n)

T. remove (n)

else :

T. update (n , n . area)

i f not Npt . isEmpty () :

C[pt] = Npt

T. i n s e r t (pt , Npt . area)

return P

chosen, its available boundary can be quickly computed by
intersecting the boundary circles of the candidate with its
immediate neighbors. If the candidate point is P and Q is
some neighbor with polar coordinates (d, ✓) then the angle
range about P that will be occluded is

(✓ � cos�1(
d

4r
), ✓ + cos�1(

d

4r
)),

(Figure 8).

After the legal ranges have been determined, new points can
be repeatedly placed at available locations on the boundary
until the available boundary is empty. The addition of a new
point only requires subtracting a single angular range from
the candidate’s boundary.

The resulting algorithm A3, which we call boundary sam-
pling, is simple to implement and runs in O(N) time and
space. Pseudo code for the algorithm is given in Listing 3
and an implementation is available from our website. Our
implementation is approximately 200 lines of C++ code and
can generate over 200,000 points per second on a 3 GHz Pen-
tium 4.

4 Results

In this section, we show results from the boundary sampling
algorithm described in Section 3, and compare them to other
methods for computing Poisson-disk distributions.

Figure 5: The maximum number of scalloped sectors that
can be generated from a single subtraction is ten, as is shown
here. If sector merging is used then the maximum is six
sectors.

and far bounding arcs as the original sector. This corre-
sponds to a disk falling completely outside the subrange
(Case (e)).

• s1 > g(✓) – a sector with the near bounding arc of the
original sector and the far bounding arc being the near
side of the disk. This occurs when the near edge of the
disk is above the near bounding arc (Cases (b), (d)).

• s2 < h(✓) – a sector with the near bounding arc being
the far edge of the disk and the far bounding arc of the
original sector. This occurs when the far edge of the
disk is below the far bounding arc (Cases (c), (d)).

The method may output more sectors than are necessary due
to the manner of dividing into angular ranges. Since sectors
are output in angular order this problem can be solved by
comparing newly output sectors to the previous two sectors.
If the bounding arcs are the same and the new sector simply
extends the angular range then the previous sector can be
updated to cover the full range and the new sector can be
discarded.

Since the maximum number of angles is eight the maximum
numbers of angle pairs considered is seven. If the full seven
are present then the first and last must be between the sector
bounding angles ↵1 or ↵2 and an angle of tangency. For
these pairs only one sector will be output. Further, two
pairs must represent the range where the disk intersects the
sector bounding arcs, and so only one sector either above
or below the disk can be output. Therefore the maximum
number of sectors that can be output by this method is ten,
one for each of the four pairs mentioned and two for each of
the other three pairs, which may output at most two sectors.
Figure 5 demonstrates a subtraction operation that achieves
this maximum. If sector merging is used then the maximum
is six, corresponding to one sector left and right of the angles
tangent to the disk and two sectors above and below the disk.

2.1.5 Available Neighborhoods of Points

The available neighborhood is partitioned into scalloped sec-
tors of outer radius 4r around each point in order to restrict

the number of sectors that must be updated after point in-
sertion to a small constant. E�cient sampling, however,
requires that all of these neighborhoods be disjoint. In gen-
eral, if an ordering relation is defined for a set S of sets it is
possible to derive a new set S0 of disjoint sets where

s02S0
s0 =

s2S

s,

by subtracting from each set the union of all members of S
that are less than it in the relation.

We use the generation order of the points as an ordering re-
lation and then define the available neighborhood of a point
p 2 P as

Np = D(p, 4r) �
p02P

D(p0, 4r), p0 < p
D(p0, 2r), p0 � p

.

The available neighborhood is N = p2P Np (Figure 6).
Each disjoint Np is computed using boolean disk subtraction.

2.2 Algorithm Details and Complexity

Our algorithm A1 for e�cient dart-throwing begins with an
initial set consisting of a single point randomly chosen in
the domain. During sample generation, we maintain an as-
sociative map from candidate points (points with non-empty
available neighborhoods) to their associated neighborhoods.

A candidate point is then randomly chosen (using neigh-
borhood areas as a probability distribution) and a random
point within its neighborhood is added to the point set. The
available neighborhood for the new point is an annulus from
radii 2r to 4r, minus a disk of radius 4r around the nearby
points. The maximum distance required to search for neigh-
bors is 8r since the scalloped region and neighbor disk are
both bounded by 4r. All nearby neighborhoods are then up-
dated by subtracting a disk of radius 2r around the newly
inserted point. This process continues until no candidate
points remain.

The maximum number of scalloped sectors in an available
neighborhood is bounded by a constant. Furthermore, the
Poisson-disk distance condition bounds the number of neigh-
bors within a fixed radius. We can therefore use a uniform
grid to implement the neighbor search and update of the
available neighborhoods in O(1) time. Similarly, picking an
individual scalloped sector within an available neighborhood
and generating a point in that sector can be done in O(1)
time. By using the balanced tree data structure described
in Section 2.1.3, we can choose an available neighborhood
of a point according to its area and update the tree within
O(log N) time, so the time complexity of the entire algo-
rithm is O(N log N) where N is the number of generated
points. The space complexity is O(N).

If we drop the requirement that the available neighborhoods
be sampled according to an area-weighted probability den-
sity function then this new algorithm A2 runs in linear time.
In practice the cost of maintaining the sectors, intersecting
them with disks, and updating data structures dominates
the running time and this does not result in a performance
increase even for large point sets.

Pseudo code for the algorithm is given in Listing 2 and em-
pirical results confirm that the generated point sets exhibits
spectral properties matching those of dart-throwing.

Figure 4: Scallop-MDS’s decomposition. Left, the next sample
is taken from an advancing front around prior samples, in non-
conformance to the strict Poisson-disk process. Right and left, the
front is decomposed into shaded scalloped regions. Inverse trans-
form sampling is uniform by area without rejection. Images cour-
tesy Dunbar and Humphreys [DH06a, DH06b].

described by an integral whose solution involves six trigonometric
functions and two inverse trigonometric functions. The paper notes
that the full formula also involves two simple variations of this de-
scription, but does not give the formula for those variations. The
inverse A−1 is calculated numerically with a binary search over
the forward transform A. Binary search converges slowly and con-
tributes a factor of b to the precision complexity.

While Scallop-MDS is fast and generates useful blue-noise, the
community has noted [MEA∗18] that the output is not identical to a
maximal Poisson-disk distribution. The next sample always arrives
in a scalloped region. In the true Poisson-disk sampling process the

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

103

Scott A. Mitchell / Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection or Approximation

next sample may arrive outside all scalloped regions but overlap
and reduce them. Put another way, Scallop-MDS oversamples near
the 4r distance around samples.

The effect on the output distribution is visible. In MPS dis-
tributions, point pairs likely have smaller distance between them
than with Scallop-MDS. One can see this in the light second ring
at 4r in Dunbar & Humphreys’s Figure 5(d) compared to their
5(a). [DH06a] Thus our terminology is Scallop-MDS for “Max-
imal Disk Sampling” rather than MPS for “Maximal Poisson-disk
Sampling.” Spoke-Darts [MEA∗18] modifies how samples are cho-
sen in annuli to come closer to desirable blue noise, and does not
claim to be a Poisson-disk distribution.

GridInner-MPS, “Linear-Time Poisson-Disk Patterns” [JK11]
generates a maximal Poisson-disk distribution in deterministic
O(n) time, with a caveat about a numerical/geometric approxi-
mation issue associated with the curved boundaries of scooped-
squares. (Our contribution is removing this caveat.) GridInner-
MPS’s key insight is calculating and maintaining the arrival time
of each candidate sample explicitly, rather than just their order of
arrival. The algorithm starts by generating a background grid of
squares. Within each square, a candidate sample is generated uni-
formly by area, with an arrival time expovariate in the area of the
square. Any sample that arrives earlier than any nearby sample can
be accepted; the order in which these are accepted does not matter.
When a sample is accepted, its disk may cover some candidate sam-
ples (with later arrival times) in nearby squares. A covered candi-
date is resampled and replaced by an uncovered one in its scooped-
square. Its arrival time is incremented by a time expovariate in the
scooped-square area, congruent to the Poisson-disk process. Be-
cause the neighbor template (Figure 3 left) is constant size, all of
these operations only happen a constant number of times per grid
square. The crux of linear runtime is the ability to “sample uni-
formly from the free space of a grid square in O(1) time.” [JK11]

In theory the scooped-square free space is a grid square with
some constant number of disks subtracted, just as with GridOuter-
MPS. The paper states, “In our reference implementation, we use
a constructive planar geometry library and approximate disks with
polygons for simplicity. . . .” The implementation [Jon13b] uses reg-
ular polygons that contain and approximate Poisson disks. There is
an accuracy–runtime tradeoff in this approximation. Let s be the
number of polygon sides. The cost of constructing and triangulat-
ing a scooped-square is O(s). The maximum distance d between a
polygon point and the true disk is d = 1− cos(π/s) = Θ(s−2). For
b bits of accuracy, we need d < 2O(−b). Hence s = 2O(b).

The paper claims that in principle one may use the spatial data
structures of Scallop-MDS for calculating areas exactly and sam-
pling from them deterministically. Our contribution is achieving
this using chocks instead. How one could use scalloped sectors
is not described in either paper and appears challenging because
scooped-squares have different geometry than scalloped sectors.

Simple-MPS, “A Simple Algorithm for Maximal Poisson-Disk
Sampling in High Dimensions” [EMP∗12] has the fastest empirical
performance of any known 2D MPS method. It is based on “Pois-
son Disk Point Sets By Hierarchical Dart Throwing” [WCE07].
These methods dispense with calculating the geometric intersec-
tion between circles and squares. Instead they use a quadtree of

Ebeida, Mitchell, Patney, Davidson, & Owens / A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions

(a) Iteration 0 End (b) Iteration 1 Start

(c) Iteration 1 End (d) Iteration 2 Start

(e) Iteration 2 End (f) Iteration 3 Start

(g) Iteration 3 End (h) Iteration 4 Start

Figure 2: Example sampling of a unit square with r = 0.2.
Active cells are light, inactive are dark. The right-hand col-
umn shows the active cells at the start of an iteration. The
left-hand column shows the cells remaining in the active cell
list before they are subdivided. Some active cells are already
covered by a single disk, but it is more efficient to leave them
until they are selected or the end of the iteration. In this ex-
ample we detected that the sampling is maximal at the be-
ginning of iteration 4, because there are no active cells.

200,000 samples at 75,000 samples/second in 3d. The size
limitations are due to 1 GB of memory.

3. Previous Work

During the last decades many methods were proposed to
generate maximal Poisson-disk samplings. The classical dart
throwing algorithm [DW85,Coo86] produces unbiased disk-
free points, but requires unbounded time to achieve a max-
imal distribution. A bias-free dart is thrown and rejected (a
“miss”) if it is closer than the minimum distance required to
a previous successful dart, otherwise it is accepted (a “hit”).
As more darts successfully hit the domain, the remaining un-
covered parts of the domain (“voids”) get smaller, decreas-
ing the probability of acceptance. In order to improve the
efficiency, many methods were proposed to solve a relaxed
version of the problem. Some methods sacrificed the bias-
free condition: Wang tiles [CSHD03, LD05] and Penrose
tiles [ODJ04, Ost07], for instance, do not target the whole
domain uniformly when a dart is thrown; other methods have
the same behavior [Mit87,Jon06,DH06,Bri07] for other rea-
sons. For example, Jones picks a sampling sub-region based
on the relative area of some Voronoi cells covering the do-
main. This introduces bias: a relatively large Voronoi cell,
with higher selection probability, might contain a relatively
small void. Wei’s parallel sampling method [Wei08] used
a sequence of multi-resolution uniform grids, but its out-
put distribution is biased and only near-maximal. Bowers
et al. [BWWM10] use a similar phase-group-decomposition
method to Wei, but without a hierarchy.

Output quality is typically evaluated using the Fourier
transform, radial anisotropy, and radial mean power plots.
Tiling methods are fast, but the bias in their output can be
observed in these pictures. Some advancing front methods
are fast, and in some cases their bias is not visible using
these pictures. Unfortunately, the community currently lacks
a definitive test of whether a (biased) process produces ac-
ceptable output; PSA [Sch11] is a start for 2d. For this rea-
son we concentrate our attention on methods whose process
is unbiased.

Some methods follow a bias-free sampling process and
achieve maximality within some threshold. The ones most
directly related to this paper are by White et al. [WCE07],
which is 2d only; and Gamito & Maddock [GM09], which
extends to higher dimensions. They throw darts in sequence,
discarding or keeping one depending on whether it is cov-
ered by a prior dart’s disk. The improvements over classic
dart throwing come from retrieving prior darts locally using
a uniform grid, and refining that grid in a quadtree to track
and target the remaining disk-free area. The diagonal of a
top-level grid square is equal to the sampling radius, so each
square accepts at most one dart. To throw an unbiased dart,
a quadtree leaf is selected weighted by its area, then a dart
is selected uniformly from within it. The likelihood that the
dart is a hit (disk-free) is equal to the ratio of the disk-free

c� 2011 The Author(s)
c� 2011 The Eurographics Association and Blackwell Publishing Ltd.

Ebeida, Mitchell, Patney, Davidson, & Owens / A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions

(a) Iteration 0 End (b) Iteration 1 Start

(c) Iteration 1 End (d) Iteration 2 Start

(e) Iteration 2 End (f) Iteration 3 Start

(g) Iteration 3 End (h) Iteration 4 Start

Figure 2: Example sampling of a unit square with r = 0.2.
Active cells are light, inactive are dark. The right-hand col-
umn shows the active cells at the start of an iteration. The
left-hand column shows the cells remaining in the active cell
list before they are subdivided. Some active cells are already
covered by a single disk, but it is more efficient to leave them
until they are selected or the end of the iteration. In this ex-
ample we detected that the sampling is maximal at the be-
ginning of iteration 4, because there are no active cells.

200,000 samples at 75,000 samples/second in 3d. The size
limitations are due to 1 GB of memory.

3. Previous Work

During the last decades many methods were proposed to
generate maximal Poisson-disk samplings. The classical dart
throwing algorithm [DW85,Coo86] produces unbiased disk-
free points, but requires unbounded time to achieve a max-
imal distribution. A bias-free dart is thrown and rejected (a
“miss”) if it is closer than the minimum distance required to
a previous successful dart, otherwise it is accepted (a “hit”).
As more darts successfully hit the domain, the remaining un-
covered parts of the domain (“voids”) get smaller, decreas-
ing the probability of acceptance. In order to improve the
efficiency, many methods were proposed to solve a relaxed
version of the problem. Some methods sacrificed the bias-
free condition: Wang tiles [CSHD03, LD05] and Penrose
tiles [ODJ04, Ost07], for instance, do not target the whole
domain uniformly when a dart is thrown; other methods have
the same behavior [Mit87,Jon06,DH06,Bri07] for other rea-
sons. For example, Jones picks a sampling sub-region based
on the relative area of some Voronoi cells covering the do-
main. This introduces bias: a relatively large Voronoi cell,
with higher selection probability, might contain a relatively
small void. Wei’s parallel sampling method [Wei08] used
a sequence of multi-resolution uniform grids, but its out-
put distribution is biased and only near-maximal. Bowers
et al. [BWWM10] use a similar phase-group-decomposition
method to Wei, but without a hierarchy.

Output quality is typically evaluated using the Fourier
transform, radial anisotropy, and radial mean power plots.
Tiling methods are fast, but the bias in their output can be
observed in these pictures. Some advancing front methods
are fast, and in some cases their bias is not visible using
these pictures. Unfortunately, the community currently lacks
a definitive test of whether a (biased) process produces ac-
ceptable output; PSA [Sch11] is a start for 2d. For this rea-
son we concentrate our attention on methods whose process
is unbiased.

Some methods follow a bias-free sampling process and
achieve maximality within some threshold. The ones most
directly related to this paper are by White et al. [WCE07],
which is 2d only; and Gamito & Maddock [GM09], which
extends to higher dimensions. They throw darts in sequence,
discarding or keeping one depending on whether it is cov-
ered by a prior dart’s disk. The improvements over classic
dart throwing come from retrieving prior darts locally using
a uniform grid, and refining that grid in a quadtree to track
and target the remaining disk-free area. The diagonal of a
top-level grid square is equal to the sampling radius, so each
square accepts at most one dart. To throw an unbiased dart,
a quadtree leaf is selected weighted by its area, then a dart
is selected uniformly from within it. The likelihood that the
dart is a hit (disk-free) is equal to the ratio of the disk-free

c� 2011 The Author(s)
c� 2011 The Eurographics Association and Blackwell Publishing Ltd.

Figure 5: Simple-MPS’s outer approximation is coarse but fast.
Right, candidates are generated sequentially in a background grid
of squares. A candidate outside all prior disks is accepted as a
sample. Dark squares are already covered by a disk and do not
generate candidates. Left, squares are refined, and squares outside
any single disk (light) are the background grid in the next iteration.
Images courtesy Simple-MPS [EMP∗12].

squares that are an outer approximation to the uncovered region.
Rejection sampling is performed in squares. Squares are refined to
improve the approximation and reduce rejections; see Figure 5.

Hierarchical Dart Throwing [WCE07] keeps track of the num-
ber of observed rejections in each square, and maintains squares of
different sizes, for E(n logn) runtime. Simple-MPS performs little
bookkeeping and refines all squares at once after O(n) throws; this
improves the empirical runtime to linear in n.

Empirical runtimes have negligible dependence on b because the
number of squares per iteration tends to decline as a geometric se-
ries. However, the worst-case for Simple-MPS has disastrous b de-
pendence. Suppose after the first sample is accepted the algorithm
is unlucky and always selects a candidate inside a disk. This con-
tinues until each top-level square is refined into 2O(b) squares of
side-length 2O(−b). Each square is thus a single floating-point po-
sition, which ensures no more rejections. The software is likely to
run out of memory in this case.

The main price of using an outer approximation and rejection
sampling in Simple-MPS, Voronoi-MPS and GridOuter-MPS is
having expected (and not deterministic) running time.

2.2. Contribution

We implement the first O(n) deterministic time algorithm for max-
imal Poisson-disk sampling up to machine precision, for 2D planar
rectangular domains. It is a variant of GridInner-MPS that repre-
sents the uncovered region exactly. There are two main changes.
First, we show how scooped-squares can be partitioned into O(1)
triangles and chocks. Second, and more importantly, we provide
formulas for the area of chocks, and inverse calculations for sam-
pling uniformly from within chocks, with zero chance of rejection,
in O(M(b) logb).

These same changes can replace the outer approximations and
rejection sampling from Voronoi-MPS and GridOuter-MPS to turn
these expected E(n logn) algorithms into deterministic O(n logn)
ones, in principle. We have actually done so for GridOuter-MPS.

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

104

Scott A. Mitchell / Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection or Approximation

We provide open source code. We show its runtime is indeed
linear, and within an order of magnitude of the fastest algorithm
in practice, Simple-MPS. There are no third-party library depen-
dences. For example, dynamic precision geometric libraries are not
needed because the constructions are designed to be topologically
robust to floating point error; see Section 4.2 and
https://github.com/samitch/DeterministicMPS

3. Chock Geometry

<latexit sha1_base64="mINfg+aHheM79HZECEqXxvUGVvY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVvV6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmoX5art3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfTmMvQ==</latexit>

1
<latexit sha1_base64="mhvBR9862tq6Zgxtvmd+ylZMP6E=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF4+QyCOBDZkdGhiZnV1nZk3Ihi/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoduo3n1BpHsl7M47RD+lA8j5n1Fip9tgtltyyOwNZJl5GSpCh2i1+dXoRS0KUhgmqddtzY+OnVBnOBE4KnURjTNmIDrBtqaQhaj+dHTohJ1bpkX6kbElDZurviZSGWo/DwHaG1Az1ojcV//Paielf+ymXcWJQsvmifiKIicj0a9LjCpkRY0soU9zeStiQKsqMzaZgQ/AWX14mjbOyd1k+r12UKjdZHHk4gmM4BQ+uoAJ3UIU6MEB4hld4cx6cF+fd+Zi35pxs5hD+wPn8Ad45jP0=</latexit>q<latexit sha1_base64="5fd1FL6LLCb1cC6wxy9wbb24Q0M=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM12067dbMLuRCihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR3dRvPXFtRKwecJxwP6IDJULBKFqpjr1S2a24M5Bl4uWkDDlqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9mh07IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzxM6GSFLli80VhKgnGZPo16QvNGcqxJZRpYW8lbEg1ZWizKdoQvMWXl0nzvOJdVS7ql+XqbR5HAY7hBM7Ag2uowj3UoAEMODzDK7w5j86L8+58zFtXnHzmCP7A+fwB4sWNAA==</latexit>

t

<latexit sha1_base64="vOi1mSFPgV5cujp+BigGeQNDFnU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVWa9UdivuDGSZeDkpQ45ar/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE974GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZmU7QheIsvL5PmecW7qlzUL8vV2zyOAhzDCZyBB9dQhXuoQQMYIDzDK7w5j86L8+58zFtXnHzmCP7A+fwByQGM7w==</latexit>c

<latexit sha1_base64="v/qVAVzLQDPUPf/RvaK1LYWa3Mc=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqBch6MVjBPOA7BJmJ7PJkNnZdaY3EEK+w4sHRbz6Md78GyePgyYWNBRV3XR3hakUBl3328mtrK6tb+Q3C1vbO7t7xf2DukkyzXiNJTLRzZAaLoXiNRQoeTPVnMah5I2wfzfxGwOujUjUIw5THsS0q0QkGEUrBT1yQ3ykivhpT7SLJbfsTkGWiTcnJZij2i5++Z2EZTFXyCQ1puW5KQYjqlEwyccFPzM8paxPu7xlqaIxN8FoevSYnFilQ6JE21JIpurviRGNjRnGoe2MKfbMojcR//NaGUbXwUioNEOu2GxRlEmCCZkkQDpCc4ZyaAllWthbCetRTRnanAo2BG/x5WVSPyt7l+Xzh4tS5XYeRx6O4BhOwYMrqMA9VKEGDJ7gGV7hzRk4L8678zFrzTnzmUP4A+fzB3g7kUU=</latexit>

h = tan�

<latexit sha1_base64="R0o1x9H6/HuBL+qRlwzmGLUlyD0=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqBch6MVjBPOA7BJmJ73JkNmHM7OBsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7/ERwpW372yqsrK6tbxQ3S1vbO7t75f2DpopTybDBYhHLtk8VCh5hQ3MtsJ1IpKEvsOUP76Z+a4RS8Th61OMEvZD2Ix5wRrWRPEluiKuQETcZ8G65YlftGcgycXJSgRz1bvnL7cUsDTHSTFClOo6daC+jUnMmcFJyU4UJZUPax46hEQ1Redns6Ak5MUqPBLE0FWkyU39PZDRUahz6pjOkeqAWvan4n9dJdXDtZTxKUo0Rmy8KUkF0TKYJkB6XyLQYG0KZ5OZWwgZUUqZNTiUTgrP48jJpnlWdy+r5w0WldpvHUYQjOIZTcOAKanAPdWgAgyd4hld4s0bWi/VufcxbC1Y+cwh/YH3+AHuVkUc=</latexit>

r = sec�
<latexit sha1_base64="O5YX0O2FZsDJGnz1DrTYkBi0OcA=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM1m0q7dbMLuRiilv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLUsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZIphg2WiES1A6pRcIkNw43AdqqQxoHAVjC8m/qtJ1SaJ/LBjFL0Y9qXPOKMGivVw16p7FbcGcgy8XJShhy1XumrGyYsi1EaJqjWHc9NjT+mynAmcFLsZhpTyoa0jx1LJY1R++PZoRNyapWQRImyJQ2Zqb8nxjTWehQHtjOmZqAXvan4n9fJTHTjj7lMM4OSzRdFmSAmIdOvScgVMiNGllCmuL2VsAFVlBmbTdGG4C2+vEya5xXvqnJRvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHyoWM8A==</latexit>

d

<latexit sha1_base64="mINfg+aHheM79HZECEqXxvUGVvY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVvV6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmoX5art3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfTmMvQ==</latexit>

1
<latexit sha1_base64="PKP/G/k7PwOhGBALkdr6Fd5PpYs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8CaciZp2zDDaS9RFIuA024wucv97hNVmsXy0UwT6gs8lixkBJtcGiQRG1Zrbt2dA60SryA1KNAaVr8Go5ikgkpDONa677mJ8TOsDCOcziqDVNMEkwke076lEguq/Wx+6wydWWWEwljZkgbN1d8TGRZaT0VgOwU2kV72cvE/r5+a8MbPmExSQyVZLApTjkyM8sfRiClKDJ9agoli9lZEIqwwMTaeig3BW355lXQu6t5V/fKhUWveFnGU4QRO4Rw8uIYm3EML2kAggmd4hTdHOC/Ou/OxaC05xcwx/IHz+QMWJI5H</latexit>

�

chock

Figure 6: A chock is bounded by a circle, radial ray, and tangent.

The shape of a chock is uniquely defined by the angle φ it sub-
tends at the circle center c; see Figures 1 and 6. The circle center is
a Poisson-disk sample. For simplicity we assume the disk radius is
1. The relevant points are the circle center c, the tangent point t, and
the ray point q. Define φ = ∠tcq. Triangle tcq has side lengths
|ct|= 1, and |tq|= h = tanφ, and |cq|= r = 1+d = secφ.

4. Algorithm

Figure 1 lower illustrates the Deterministic-MPS pipeline. See Fig-
ure 7 for an example run. Algorithm 1 gives our pseudocode. The
crux is the resampling:

Line 21. Construct scooped-square geometry.
Line 25. Trim chocks, create chocks next to disks.
Line 26. Triangulate remaining polygons.
Lines 27 and 28. Sample uniformly from triangles and chocks.

Runtime analysis. Let n be the output number of samples, and
G the grid. Each grid square can only fit one Poisson-disk sam-
ple, and an area argument shows that at least a constant fraction of
grid squares generate an accepted disk, so n = Θ(|G|). (We observe
2.87n ≈ |G| for MPS.) To show the runtime is linear in the size of
the grid, observe that everything in each grid square is constant size
and occurs only a constant number of times. Each square is only re-
sampled when a neighbor square’s sample is accepted, which can
happen at most 9 times (Lemma 9 in GridOuter-MPS [EPM∗11]).
When a square is resampled, the scooped-square has at most 9
bounding disks, so its #chocks and #triangles is at most a constant.
The count of antecedent (earlier) squares is only updated when one
of its neighbor squares is resampled. There are 20 neighbor squares,
each resampled at most 9 times, giving at most 180 updates. Mem-
ory is also linear in n.

4.1. Locally-early Samples

For a candidate sample arriving at a given time, if there is no pos-
sibility that a sample can arrive inside its disk at an earlier time,

Figure 7: Deterministic-MPS example run snapshots. Green can-
didate samples are locally early and in the queue to be accepted.
Red candidates are not locally early; they either will become lo-
cally early or be resampled. Black disks are already accepted.
Squares with no samples are completely covered by disks, with an
empty scooped-square. The faint circles and points show wrapping
around the periodic boundary, which is optional.

it is locally-early and can be accepted. The algorithm can process
locally-early samples in any order and still conform to the Poisson-
disk process.

The square-neighbor test says a candidate is locally-early if it
is earlier than all of the candidates in its square neighbors. This is
sufficient and fast, but we find more locally-early candidates if we
only consider squares that intersect the candidate’s disk, the disk-
neighbor test. A heuristic that saves 10% is to do find and accept
candidates with no earlier disk-neighbors in seven passes over the
entire grid, then switch to square-neighbors and track antecedents.

4.2. Scooped-square Construction

We construct scooped-squares using our own geometric primitives
in standard floating point arithmetic. These are topologically ro-
bust without the use of geometric libraries or dynamic precision,

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

105

https://github.com/samitch/DeterministicMPS

Scott A. Mitchell / Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection or Approximation

Algorithm 1 Deterministic-MPS: maximal Poisson-disk sampling
Require: Rectangular grid G of whole grid squares
Require: Flag if domain is periodic: True or False
Ensure: Maximal Poisson-disk sampling of rectangle

1: function DETERMINISTIC-MPS(G)
2: // Initialize Grid G
3: for g ∈ G do
4: g.point = (u,v) uniform random in square
5: g.time = Ae−Aw, rand w, expovariate in area A(g)
6: g.scooped-square = square polygon g
7: Global pre-pass heuristic
8: // Find locally-early squares
9: for g ∈ G and h ∈ neighbors(g) do

10: increment #antecedents of g or h, whichever is later
11: for g ∈ G do
12: EarlySquares.add(g if no antecedents)
13: // Accept samples and update
14: repeat
15: g = EarlySquares.pop() . any order
16: accept g.point as Poisson-disk sample
17: for h ∈ neighbors(g) do
18: decrement h.antecedents . g no longer blocks h
19: // resample candidates covered by disk(g.point)
20: if h.point ∈ disk(g.point) then
21: h.scooped-square−= disk(g.point)
22: if h.scooped-square is empty then
23: h.time =∞
24: else
25: trim chocks from h.scooped-square
26: triangulate remaining polygon
27: pick U ∈ {chocks, triangles} by area
28: sample h.point ∈U uniform by area
29: h.time += expovar(A(h.scooped-square))
30: for s ∈ neighbors(h) do
31: if h is later than s, but used to be earlier then
32: increment h.antecedents
33: decrement s.antecedents
34: EarlySquares.add(s if no antecedents)
35: EarlySquares.add(h if no antecedents)
36: until EarlySquares == empty

exploiting the convexity and size of the square and disks. We rep-
resent a scooped-square by the ccw (counter clockwise) ordered
loops of segments bounding the uncovered regions. Segments are
circular arcs or lines. Initially, a scooped-square is just a square.

To subtract a disk from a scooped-square, we subtract the disk
from each segment, then split the sequence of segments into loops
at each instance of the disk. To robustly subtract the disk from a
line segment, we calculate the points of the disk intersected by the
corresponding grid line, if any. It is easy to ensure the two points
are ordered correctly, even in the numerically-degenerate cases of
near tangency, because the grid line is axis aligned. Some cases of
the ordering of the arc and line segment endpoints are illustrated in
Figure 8. Subtracting a disk from a circular arc segment is analo-
gous, where instead of the points’ order along a coordinate axis, we

use their angular order around the circle’s center. Because accepted
Poisson-disk centers do not lie in other disks, case Figure 8b cannot
happen for arc-arc intersections. We also check for numerically-
missed intersections, such as when a segment lies strictly interior
to the disk, and the next segment lies strictly exterior.

The resulting segments create a new loop, which we now split
into connected components; Figure 9 shows a simple example. A
subsequence terminated by two segments from the same disk is a
connected component. Multiple such sequences result in multiple
connected components. This follows from observing that a disk can
only bound a connected component once, in a single segment. For
a component, we replace the two disk instances with a single one,
using the endpoint of the first instance’s cw endpoint and the second
instance’s ccw endpoint.

4.3. Trim Chocks

We partition a scooped-square by trimming off chocks, leaving a
polygon bounded by straight segments. We first split some seg-
ments to ensure that chocks are disjoint and interior to the scooped-
square; see Figure 11. Each final d-segment generates two chocks;
see Figure 10 left.

Since a square diagonal is 1, the largest circular arc in a scooped-
square has angle π/3. Since arcs are split into at least two chocks,
the maximum chock angle φ is π/6. In Section 4.5 we will see
that for φ ≤ π/4 the numerics allow us to sample precisely up to
machine precision. In other contexts, if a chock is deemed too large
it is simple to split it as finely as desired; see Figure 10 right.

4.4. Triangulation

We triangulate the polygons; Figure 12 gives examples. Ear clip-
ping is robust and does not introduce additional points. Let
p0, p2, . . . pm be the loop vertices. The principle is to recursively
clip a triangle 4pi, j,k, removing p j from the loop. Any non-
reflex triangle that does not contain another polygon vertex can be
clipped, and there are always at least two of them. [Mei75] Check-
ing the angle and emptiness is done with cross products.

Partitioning Alternative. It may be possible to partition into tri-
angles and chocks directly, without first trimming. Some extension
of “Linear-size Nonobtuse Triangulation of Polygons” [BMR95]
might work well because it is based on circle-packing domains
bounded by straight lines and circular arcs. Since Poisson disks can
overlap, their triangulation would have to be extended to the case
that the radical axis is not tangent to the circles.

4.5. Uniform Sampling from a Chock without Rejection

The available area in a grid cell is represented by some triangles
and chocks. To select a point uniformly at random, we first pick
one of these triangles or chocks uniformly by area, which requires a
formula for the area of a chock, Equation (1). To sample uniformly
within a chock, we need to calculate the inverse area, Equations (2)
to (4); and the inverse radius by swept area, Equation (5).

Area of a Chock. See Figure 6. The area of a chock is the area of

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

106

Scott A. Mitchell / Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection or Approximation

a bv w

(a) av,
_
vw,wb

a bv w

(b) av,
_
vw,wb

v a b w

(c) ∅

v
a

bw

(d) _vw,wb

v a bw

(e) ab

Figure 8: Representative cases of the result of subtracting a disk from an axis-aligned line segment. The result is the possible segments
bounding the uncovered region of the square, in ccw order: we may have 3, 2, 1, or 0. We can keep the order of the endpoints topologically
consistent just with floating point operations. We re-chain the segments together to build the boundary. In cases like Figure 8a, the arc splits
the scooped-square into multiple connected components. In cases like Figure 8d,

_
vw,wb, the re-chaining replaces the endpoint v with the

endpoint computed when subtracting the disk from the vertical grid segment.

A

BC
D

a b

cd

E
f eg

h

(Aab Bbc Ccd Dda)

∅ E•eBec CcfEfgCgd DdhEh•

(EfeBecCcf) (EhgCgdDdh)

-E

original loop

resulting two loops

Figure 9: Example updating a scooped-square. The current loop
of segments is AabBbcCcdDda, where A has endpoints a and b, etc.
We subtract disk E from each segment, and subsequences between
instances of E form components.

<latexit sha1_base64="0b1YbnkZtA1dRGT8jYfgA8a4aAo=">AAAB7XicbVBNSwMxEJ2tX7V+rXr0EiyCp7pbRT0WvXisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MOFMG8/7dgorq2vrG8XN0tb2zu6eu3/Q1DJVhDaI5FK1Q6wpZ4I2DDOcthNFcRxy2gpHt1O/9USVZlI8mHFCgxgPBIsYwcZKzW4yZGfVnlv2Kt4MaJn4OSlDjnrP/er2JUljKgzhWOuO7yUmyLAyjHA6KXVTTRNMRnhAO5YKHFMdZLNrJ+jEKn0USWVLGDRTf09kONZ6HIe2M8ZmqBe9qfif10lNdB1kTCSpoYLMF0UpR0ai6euozxQlho8twUQxeysiQ6wwMTagkg3BX3x5mTSrFf+ycn5/Ua7d5HEU4QiO4RR8uIIa3EEdGkDgEZ7hFd4c6bw4787HvLXg5DOH8AfO5w/2Z468</latexit>

�/2
<latexit sha1_base64="0b1YbnkZtA1dRGT8jYfgA8a4aAo=">AAAB7XicbVBNSwMxEJ2tX7V+rXr0EiyCp7pbRT0WvXisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MOFMG8/7dgorq2vrG8XN0tb2zu6eu3/Q1DJVhDaI5FK1Q6wpZ4I2DDOcthNFcRxy2gpHt1O/9USVZlI8mHFCgxgPBIsYwcZKzW4yZGfVnlv2Kt4MaJn4OSlDjnrP/er2JUljKgzhWOuO7yUmyLAyjHA6KXVTTRNMRnhAO5YKHFMdZLNrJ+jEKn0USWVLGDRTf09kONZ6HIe2M8ZmqBe9qfif10lNdB1kTCSpoYLMF0UpR0ai6euozxQlho8twUQxeysiQ6wwMTagkg3BX3x5mTSrFf+ycn5/Ua7d5HEU4QiO4RR8uIIa3EEdGkDgEZ7hFd4c6bw4787HvLXg5DOH8AfO5w/2Z468</latexit>

�/2

Figure 10: Left, each circular arc bounding a scooped-square con-
tributes two chocks. Right, a large-angled chock may be split into
two half-angle chocks and a right triangle. This may be done re-
cursively to make the chock regions as small as desired.

the triangle4cqt minus the area of the sector 2φ: A = Area()−
Area(2), where Area() = h/2 = (tanφ)/2 and Area(2) = φ/2.

A(φ) = (tanφ−φ)/2 (1)

Uniform Random Sampling from a Chock. See Figure 13. We
use inverse transform sampling [Dev86] to select a point uniformly.
We select a uniformly-random area fraction of the whole chock,
invert to find the angle of the sub-chock with that area, then sample
along that angle’s ray proportional to squared radius. That is, let
u ∈ [0,1] be a uniform random variable, and A be the area of the
entire chock. We seek φs such that A(φs) = uA(φ).

Figure 11: Right, if a chock has the potential to overlap with some
other circle’s chock (red), then we split the circular arcs at the clos-
est points. Left, a disk too close to a square edge is analogous.

↑o
ne

lo
op

↓t
w

o
lo

op
s

Figure 12: Some example triangulations.

Inverse Area of a Chock. We must invert tanφ−φ. While we do
not have a mathematically closed form for this inverse, we do have
a numerically closed form. (Note tan itself is numerically closed in
the same way, often computed using logarithms.) It is exact up to
machine precision for [0,A(π/4)], exceeding the needed domain.

The initial guess for the Newton iterate is

φ0 =
3
√

6uA (2)

based on the Maclaurin series

tanφ−φ≈ 1
3

x3 +
2

15
x5 +

17
315

x7 + . . .

The derivative of the area is (1/cos2
φ−1)/2, simplifying to

A′(φ) = (tan2
φ)/2

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

107

Scott A. Mitchell / Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection or Approximation

<latexit sha1_base64="VHASiT9Lyl4FUbYCs6HD5bDYkPA=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYBA8hV0V9Rj04jGCeUCyhtnZ3mTI7IOZWSUs+Q8vHhTx6r9482+cbPagiQUNRVX39HR5ieBK2/a3tbS8srq2Xtoob25t7+xW9vZbKk4lwyaLRSw7HlUoeIRNzbXATiKRhp7Atje6mfrtR5SKx9G9HifohnQQ8YAzqo300MtfyCT6E9lX/UrVrtk5yCJxClKFAo1+5avnxywNMdJMUKW6jp1oN6NScyZwUu6lChPKRnSAXUMjGqJys3znhBwbxSdBLE1FmuTq74mMhkqNQ890hlQP1bw3Ff/zuqkOrtyMR0mqMWKzRUEqiI7JNALic4lMi7EhlElu/krYkErKtAmqbEJw5k9eJK3TmnNRO7s7r9avizhKcAhHcAIOXEIdbqEBTWAg4Rle4c16sl6sd+tj1rpkFTMH8AfW5w88opMA</latexit>rs

<latexit sha1_base64="yH1tHUZCQdVJnY3ZP6PH19TIQGo=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclURFXRbduKxgH9CEMJnctEMnD2YmYgn5FTcuFHHrj7jzb5ymWWjrgQuHc+6dO/f4KWdSWda3sbK6tr6xWduqb+/s7u2bB42eTDJBoUsTnoiBTyRwFkNXMcVhkAogkc+h709uZ37/EYRkSfygpim4ERnFLGSUKC15ZsMp38gFBAV20jHzpGc2rZZVAi8TuyJNVKHjmV9OkNAsglhRTqQc2laq3JwIxSiHou5kElJCJ2QEQ01jEoF083JvgU+0EuAwEbpihUv190ROIimnka87I6LGctGbif95w0yF127O4jRTENP5ojDjWCV4FgQOmACq+FQTQgXTf8V0TAShSsdV1yHYiycvk95Zy75snd9fNNs3VRw1dISO0Smy0RVqozvUQV1E0RN6Rq/ozSiMF+Pd+Ji3rhjVzCH6A+PzB1a7lKQ=</latexit>

�s

<latexit sha1_base64="PKP/G/k7PwOhGBALkdr6Fd5PpYs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8CaciZp2zDDaS9RFIuA024wucv97hNVmsXy0UwT6gs8lixkBJtcGiQRG1Zrbt2dA60SryA1KNAaVr8Go5ikgkpDONa677mJ8TOsDCOcziqDVNMEkwke076lEguq/Wx+6wydWWWEwljZkgbN1d8TGRZaT0VgOwU2kV72cvE/r5+a8MbPmExSQyVZLApTjkyM8sfRiClKDJ9agoli9lZEIqwwMTaeig3BW355lXQu6t5V/fKhUWveFnGU4QRO4Rw8uIYm3EML2kAggmd4hTdHOC/Ou/OxaC05xcwx/IHz+QMWJI5H</latexit>

�

Figure 13: Uniform-area sampling within a chock. First, select φs
so its red sub-chock is a uniform random fraction of the entire yel-
low chock, i.e. dependent on tanφ− φ. Second, select rs to be a
uniform random fraction of the elemental swept area, i.e. depen-
dent on r2. Our sample is the red point (φs,rs).

Thus the Newton iterate is

φi+1 = φi−
A(φi)−uA

A′(φi)
= φi−

tanφi−φi−2uA
tan2 φi

(3)

The method is numerically stable, with no need for branches or
checks. Using double precision, five iterations suffice to compute
φ = A−1(uA) to 15 digits of absolute accuracy for any angle up to
π/4. Recall radii are 1, so 15 digits is also relative error. Thus our
sample is on the radial ray of the chock with angle φs given by

φs = φ5. (4)

Higher precision requires more iterations, but this cost can be
offset by using low precision in early iterations. [Bre76, BZ10] For
b bits, the complexity is the sum of a geometric series, and bounded
by M(b) logb. (Recall M(b) is the cost of b-bit multiplication.) This
is merely a constant multiple of the cost of tanφ.

Random Radius. We now have an angle φs for our sample, and
it remains to select its radius rs, its distance along ray φs. Again,
we use the inverse transform, with CDF(rs) =

∫ rs
1 r dr . The ray

segment has extent [1,secφ], thus
∫ sec φ

1 r dr = (sec2
φ− 1)/2 =

(tan2
φ)/2 is the entire segment. We select u ∈ [0,1] uniformly, and

invert to find rs :
∫ rs

1 r dr = u(tan2
φ)/2. The solution is

rs =

√
u tan2 φs +1. (5)

Note tan2
φ+1 = sec2

φ so the upper limit for u = 1 is correct.

4.6. Variants

Sequential-MPS (implemented) is Deterministic-MPS without ar-
rival times, which is equivalent to GridOuter-MPS with approxima-
tions and rejections replaced by our exact scooped-squares geom-
etry and chock sampling. At each step, Sequential-MPS selects a
random scooped-square uniformly by area and generates a uniform
sample within it.

ChockSubdivision-MPS. Instead of sampling from chocks, we
could sample only from triangles. If the random-area chosen falls
inside a chock, recursively split it into a right triangle and two
chocks, and continue like a binary search. Perhaps this is simpler
than the inverse area using Newton’s method, but it has worse pre-

cision complexity, O(b). (We assume b logb can be avoided, here
and in Scallop-MDS, by computing the area only to the precision
required for determining which branch of a split to take.)

5. Implementation and Reproducibility

The open source C++ code is available from
https://github.com/samitch/DeterministicMPS

It includes methods to reproduce the experimental results and
figures in this paper. It also includes Sequential-MPS and a 2D ver-
sion of Simple-MPS.

Limitations. The software only handles rectangular domains
composed of whole background squares. For periodic domains (i.e.
tori), there must be at least three squares in each dimension to avoid
the special case of a disk overlapping with itself. These are limita-
tions of the implementation only. In principle the algorithm extends
to 2D polygons with holes.

Trigonometric Functions. In chock-sampling the only trigono-
metric function needed was tan. We experimented with using the
Taylor series expansion of tanφ− φ exclusively, but decided us-
ing C++ std::tan function from <cmath> was simpler and bet-
ter. Outside the sampling subroutine, the implementation also uses
atan2(y,x) for converting Cartesian to polar coordinates.

5.1. Experimental Runtime

Our main contribution is Deterministic-MPS’s theoretical
O(nM(b) logb) runtime, but our experimental results show that
it is also practical. While not as fast as Simple-MPS, recall
Simple-MPS has average performance that is not theoretically
guaranteed, and poor worst-case performance.

Experiments are performed on a Mac laptop and a Linux work-
station: MacOS 11.6.2: 2.2 GHz dual-core Intel Core i7, 8 GB
memory, manufactured circa 2015; Red Hat Enterprise Linux 7.8:
2.50GHz Intel Xeon E5-2670 v2, 40 processors, 65 GB memory.

We compare Deterministic-MPS, Simple-MPS, Voronoi-MPS,
GridInner-MPS, and Sequential-MPS. We used the open source
versions of Voronoi-MPS [Jon13a] in C, and GridInner-
MPS [Jon13b] in Python. We implemented Simple-MPS and
Sequential-MPS in our framework because the original sources for
Simple-MPS and GridOuter-MPS are not publicly available.

On the Mac, Deterministic-MPS generates about 120k samples /
second for most test sizes; see Table 2 and Figure 14. Deterministic-
MPS is about 2× faster than Sequential-MPS; see Figure 15.
This is because generating the random arrival time is fast and
Sequential-MPS must recalculate areas every time a sample disk
reduces a scooped-square, whereas Deterministic-MPS only needs
to do so when that covers a candidate. Simple-MPS is about 2–
3× faster than Deterministic-MPS; see Figure 16. Deterministic-
MPS is about 30× faster than Voronoi-MPS for 1M points; see
Figure 17. Deterministic-MPS is 630× faster than GridInner-MPS;
see Figure 18. This is even after we improved the GridInner-MPS
runtime by 8× by increasing the square diagonal to the minimum
separation between samples. The GridInner-MPS code is adequate

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

108

https://github.com/samitch/DeterministicMPS

Scott A. Mitchell / Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection or Approximation

Determ. Sequ. Simple Voronoi Inner

Mac 120k 61k 270k 3.8k 190
Linux 91k 40k 300k 11k 68

Table 2: Runtime efficiency. Samples per second when gener-
ating 1M samples. GridInner is slow due to Python.

to demonstrate correctness and linear time, but is in Python and a
reimplementation could be much faster.

Figures 14 to 16 report averages over five runs. Mac runtime var-
ied significantly when rerunning for a second or third time in a row.
We speculate this is due to the memory hierarchy and CPU burst
mode. For all the methods, the relative performances on Linux are
different, due to its different CPU and memory characteristics. For
GridInner-MPS, the Python 3 versions and virtual environments
differ on the two platforms. For Voronoi-MPS and GridInner-MPS,
it’s possible that the libraries differ by platform as well.

Memory. We profiled and tuned for fast runtime, not low mem-
ory. Deterministic-MPS produces at least 4M samples, Sequential-
MPS 2M, Simple-MPS 10M, Voronoi-MPS 2M, and GridInner-
MPS 2M, before experiencing paging issues on the 8 GB Mac.

Code Size. Deterministic-MPS is in C++, self-contained, and rel-
atively large: 4500 lines, plus 2900 lines of tests and examples.
Our Simple-MPS is 700 lines on top of that. True to its nickname,
Simple-MPS took us only a day to reimplement, given our extant
grid, disk, and point infrastructure. Our Sequential-MPS is an addi-
tional 900 lines. Voronoi-MPS is 1400 lines in C, plus the GNU Tri-
angulated Surface Library, GTS. GridInner-MPS is only 300 lines
in Python, plus the python package Polygon.

0

20

40

60

80

100

120

140

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07n/
T(

n)
: k

 sa
m

pl
es

/s
ec

on
d

Number of Output Samples, n

Deterministic-MPS Efficiency by Output Size

Linux

Mac

Figure 14: Deterministic-MPS runtime efficiency. Theoretical run-
time is O(n); horizontal would indicate O(n) in practice.

5.2. Output Quality

The MPS distribution quality is evaluated by spectral analysis using
“Point Set Analysis,” PSA [Sch13, SD11, HSD13]; see Figure 19.
This provides numerical verification that Deterministic-MPS pro-
duces maximal Poisson-disk samplings, and not some other dis-
tribution. Our code internally verifies saturation and separation in
the final distribution. Figure 1 right shows 4000 random points in

0

20

40

60

80

100

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07n/
T(

n)
: k

 sa
m

pl
es

/s
ec

on
d

Number of Output Samples, n

Sequential-MPS Efficiency by Output Size

Linux

Mac

Figure 15: Runtime efficiency of Sequential-MPS, our O(n logn)
deterministic time version of GridOuter-MPS with chock sampling
instead of rejection sampling.

0

100

200

300

400

500

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07n/
T(

n)
: k

 sa
m

pl
es

/s
ec

on
d

Number of Output Samples, n

Simple-MPS Efficiency by Output Size

Mac

Linux

Figure 16: Runtime efficiency of our reimplementation of Simple-
MPS. Linear time would be a horizontal line. The number of opera-
tions is linear, but the code slows down waiting for memory access.
(This can also be seen in the original authors’ data.) The effect of
memory slowdown is strongest in this method because it does so
little computation.

0

2

4

6

8

10

12

14

16

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07n/
T(

n)
: k

 sa
m

pl
es

/s
ec

on
d

Number of Output Samples, n

Voronoi-MPS Efficiency by Output Size

Mac

Linux

Figure 17: Voronoi-MPS empirical runtime efficiency. Theoretical
runtime is E(n logn).

a φ = π/4 chock, and provides visual verification that our numeri-
cal sampling procedure is uniform by area within a chock. After a
sample is generated we verify that it is in the square and outside any
disk: the tolerance is __DBL_EPSILON__ for squares and twice

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

109

Scott A. Mitchell / Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection or Approximation

0

25

50

75

100

125

150

175

200

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07n/
T(

n)
: s

am
pl

es
/s

ec
on

d

Number of Output Samples, n

GridInner-MPS Efficiency by Output Size

Mac

Linux

Figure 18: GridInner-MPS empirical runtime efficiency. Theoret-
ical runtime is O(n). Horizontal would indicate O(n) in practice.
Note the y-axis scale is samples / second, and for the other runtime
figures it is thousands of samples / second.

RDF Power Spectrum

Averaged over 100 sets
Gbl. Mindist 0.77291
Avg. Mindist 0.80703
Eff. Nyquist 0.64509
Oscillations 1.56101

0 2.2 4.5 6.8 9.0
-125

-62

0

62

125

frequency

an
is

ot
ro

py

Figure 19: PSA [Sch13] analysis of the output of 100
Deterministic-MPS runs over a 100×100 periodic grid, about 3500
points each. RDF is the 1D Radial Distance Function, the his-
togram of distances between all pairs of points. Its Fourier trans-
form is the 1D Power Spectrum. Upper right is the 2D Fourier
transform. Upper left is anisotropy, and an example point set.

that for disks. This has been verified on billions of tests, and some
hand-built degenerate cases such as four disks meeting at a point.

6. Open Problems and Conclusion

Domains. We would like to apply the algorithm to more types
of domains. Irregular polygonal domains appears straightforward
in principle, but the current implementation exploits grid squares
being axis-aligned. Planar domains with non-straight boundaries
may require inverse transforms for additional shapes. Embedded
surfaces would also require new inverse transforms. For higher-
dimensions, the challenges include constructing robust geometric
primitives for cubes with spheres subtracted, and developing the
math for the higher-dimensional analogues of chocks.

Parallelism. We would like a parallel algorithm that takes con-
stant time per sample in the worst case. PixelPie [IYLV13] is GPU-
based and empirically has very fast average performance. It does
rejection sampling similar to Simple-MPS, but based on pixels in-
stead of boxes. It generates candidate samples centered at some
random pixels, with random depth, and uses occlusion culling to
determine which can be accepted. The next iteration considers just
the remaining uncovered pixels. We would like a spatial statistics
proof that if one throws a number of darts proportional to the area of
the remaining domain, then a constant fraction of them are accepted
on average. This may be sufficient to prove that Simple-MPS in se-
rial has expected linear time, and PixelPie has expected constant
time. (The theoretical worst-case performance for both is poor.)

Distributions. While we have focused on exactly reproduc-
ing the Poisson-disk process, a definition of the Poisson-disk out-
put spectrum might enable the discovery of better processes for
producing such output. Other distributions may be more valu-
able than Poisson-disk distributions anyway. One variant is step
blue noise [HSD13], where the power spectrum is a step func-
tion from zero to a constant. (Recall Poisson-disk samplings have a
spike in the RDF and associated oscillations in the power spec-
trum; see Figure 19.) A general variant is importance sampling
or sampling of vector fields. There are many optimization pro-
cedures [DGBOD12, HSD13, ZH16, CP21] to move 2D points,
disks, or other local kernels to match a user-specified spectrum.
Other techniques [MREB12] generate such samples a priori, but
are not deterministic time.

It may be possible to extend Deterministic-MPS to non-uniform
disk radii for these distributions. We may partition the Voronoi re-
gions of Voronoi-MPS into chocks and triangles as before. Power
cells and splitting chocks may be helpful. Another option is to
use our scoop-chock-triangulate method on the dynamically-sized
squares of “Variable Radii Poisson-Disk Sampling” [MREB12].

Summary. We provided the math for uniform sampling from a
chock without rejection. This enabled a linear deterministic time al-
gorithm for generating maximal Poisson-disk samplings, with min-
imal dependence on machine precision. We proved this theoreti-
cally, and demonstrated it in practice in open source code.

Acknowledgements

I thank Thouis Ray Jones for suggesting this problem to me in
2012, and wish it had been less than 9 years until I discovered
the chock inverse transform sampling solution! I thank him for ex-
plaining the details of his prior publications and implementations,
and discussing many technical points of the present paper. I apol-
ogize for “Efficient Maximal Poisson-Disk Sampling” claiming to
have the first expected E(n logn) algorithm for maximal Poisson-
disk sampling; that distinction belongs to “Efficient Generation of
Poisson-Disk Sampling Patterns” [Jon06], 5 years earlier.

I thank the anonymous SGP reviewer for pointing out that the re-
cursive subdivision of chocks into a triangle and two smaller chocks
in Figure 10 can be used to generate an MPS distribution without
the need for an inverse area transform.

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

110

Scott A. Mitchell / Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection or Approximation

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Re-
search (ASCR), Applied Mathematics Program. Sandia National Labora-
tories is a multi-program laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of En-
ergy’s National Nuclear Security Administration under contract DE-NA-
0003525. This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of Energy or the
United States Government.

References
[BMR95] BERN M., MITCHELL S., RUPPERT J.: Linear-size nonobtuse

triangulation of polygons. Discrete & Computational Geometry 14, 1
(1995), 411–428. 6

[Bre76] BRENT R. P.: The complexity of multiple-precision arithmetic.
The Complexity of Computational Problem Solving (1976), 126–165.
arXiv:1004.3608. 2, 8

[BZ10] BRENT R. P., ZIMMERMANN P.: Modern Computer Arithmetic,
vol. 18. Cambridge University Press, 2010. 2, 8

[CP21] CAMMARASANA S., PATANÈ G.: Kernel-based sampling of ar-
bitrary signals. Computer-Aided Design 141 (2021), 103103. doi:
10.1016/j.cad.2021.103103. 10

[Dev86] DEVROYE L.: Non-Uniform Random Variate Genera-
tion. Springer, New York, NY, 1986. doi:10.1007/
978-1-4613-8643-8. 2, 7

[DGBOD12] DE GOES F., BREEDEN K., OSTROMOUKHOV V., DES-
BRUN M.: Blue noise through optimal transport. ACM Transactions on
Graphics (TOG) 31, 6 (2012), 1–11. 10

[DH06a] DUNBAR D., HUMPHREYS G.: A spatial data structure for fast
Poisson-disk sample generation. In SIGGRAPH ’06 (2006), pp. 503–
508. doi:10.1145/1179352.1141915. 3, 4

[DH06b] DUNBAR D., HUMPHREYS G.: Using Scalloped Sectors to
Generate Poisson-Disk Sampling Patterns. Tech. Rep. CS-2006-08, Uni-
versity of Virginia, 2006. 3

[DW85] DIPPÉ M. A. Z., WOLD E. H.: Antialiasing through stochas-
tic sampling. In SIGGRAPH ’85 (1985), pp. 69–78. doi:10.1145/
325334.325182. 2, 3

[EMP∗12] EBEIDA M. S., MITCHELL S. A., PATNEY A., DAVIDSON
A. A., OWENS J. D.: A simple algorithm for maximal Poisson-disk
sampling in high dimensions. Computer Graphics Forum 31, 2 (May
2012), 785–794. doi:10.1111/j.1467-8659.2012.03059.x.
3, 4

[EPM∗11] EBEIDA M. S., PATNEY A., MITCHELL S. A., DAVIDSON
A., KNUPP P. M., OWENS J. D.: Efficient maximal Poisson-disk sam-
pling. ACM Transactions on Graphics (TOG) 30, 4 (July 2011), 49:1–
49:12. doi:10.1145/1964921.1964944. 2, 3, 5

[HSD13] HECK D., SCHLÖMER T., DEUSSEN O.: Blue noise sampling
with controlled aliasing. ACM Trans. Graph. 32, 3 (jul 2013). doi:
10.1145/2487228.2487233. 9, 10

[IYLV13] IP C. Y., YALÇIN M. A., LUEBKE D., VARSHNEY A.: Pix-
elPie: Maximal Poisson-disk sampling with rasterization. In Proceedings
of the 5th High-Performance Graphics Conference (2013), pp. 17–26. 10

[JK11] JONES T. R., KARGER D. R.: Linear-time Poisson-disk patterns.
Journal of Graphics, GPU, and Game Tools 15, 3 (2011), 177–182. 3, 4

[Jon06] JONES T. R.: Efficient generation of Poisson-disk sampling pat-
terns. Journal of Graphics Tools 11, 2 (2006), 27–36. 2, 3, 10

[Jon13a] JONES T. R.: Code for “Efficient generation of Poisson-
disk sampling patterns”. https://github.com/thouis/
fast-poisson-disk, 5 February 2013. 8

[Jon13b] JONES T. R.: Example implementation for “Linear-
time Poisson-disk patterns”. https://github.com/thouis/
linear-poisson-disk, 5 February 2013. 4, 8

[MEA∗18] MITCHELL S. A., EBEIDA M. S., AWAD M. A., PARK C.,
PATNEY A., RUSHDI A. A., SWILER L. P., MANOCHA D., WEI L.-
Y.: Spoke-darts for high-dimensional blue-noise sampling. ACM Trans.
Graph. 37, 2 (May 2018), 22:1–22:20. doi:10.1145/3194657. 3,
4

[Mei75] MEISTERS G. H.: Polygons have ears. The American Mathe-
matical Monthly 82, 6 (1975), 648–651. 6

[MREB12] MITCHELL S. A., RAND A., EBEIDA M. S., BAJAJ C.:
Variable radii Poisson-disk sampling, extended version. In Cana-
dian Conference on Computational Geometry (CCCG) (2012), vol. 5,
Springer, pp. 1–9. 10

[Sch13] SCHLÖMER T.: PSA point set analysis. Version 1.1, http:
//code.google.com/p/psa/, 2013. 9, 10

[SD11] SCHLÖMER T., DEUSSEN O.: Accurate spectral analysis of two-
dimensional point sets. Journal of Graphics, GPU, and Game Tools 15,
3 (2011), 152–160. 9

[WCE07] WHITE K. B., CLINE D., EGBERT P. K.: Poisson disk point
sets by hierarchical dart throwing. In 2007 IEEE Symposium on Interac-
tive Ray Tracing (2007), IEEE, pp. 129–132. 4

[ZH16] ZHONG Z., HUA J.: Kernel-based adaptive sampling for im-
age reconstruction and meshing. Computer Aided Geometric Design
43 (2016), 68–81. Geometric Modeling and Processing 2016. doi:
10.1016/j.cagd.2016.02.013. 10

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

111

https://doi.org/10.1016/j.cad.2021.103103
https://doi.org/10.1016/j.cad.2021.103103
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1145/1179352.1141915
https://doi.org/10.1145/325334.325182
https://doi.org/10.1145/325334.325182
https://doi.org/10.1111/j.1467-8659.2012.03059.x
https://doi.org/10.1145/1964921.1964944
https://doi.org/10.1145/2487228.2487233
https://doi.org/10.1145/2487228.2487233
https://github.com/thouis/fast-poisson-disk
https://github.com/thouis/fast-poisson-disk
https://github.com/thouis/linear-poisson-disk
https://github.com/thouis/linear-poisson-disk
https://doi.org/10.1145/3194657
http://code.google.com/p/psa/
http://code.google.com/p/psa/
https://doi.org/10.1016/j.cagd.2016.02.013
https://doi.org/10.1016/j.cagd.2016.02.013

