
Tree on Mars,
an Immersive Virtual Reality Experience

Paulo Ricardo Duarte

MEI-M ISCTE-IUL – Lisboa, Portugal
Biodroid Productions, SA

pauloduartewalac@gmail.com

 Miguel Sales Dias
ISCTE-IUL – Lisboa, Portugal

MLDC, Microsoft Language Development
Center – Porto Salvo

miguel.dias@microsoft.com

1. INTRODUCTION
Tree on Mars is an Immersive Reality project, with the
following story: the viewer is an astronaut who travels to
Mars aiming to examine a tree found in the center of a
crater. The project is to be viewed in the CaveH platform
located at Centro de Ciência Viva at Lousal, and was
developed in the context of the 3D programming
curriculum of the Masters of Informatics Engineering -
Multimedia of ISCTE-IUL in Lisbon. By definition, a
Cave is an Immersive Virtual Reality (VR) system,
which projects stereoscopic images with real scale
dimensions [1]. In the CaveH case, the set-up is of a
parallelepiped form and each face is a planar projection
image, where the 3D effect comes from its stereoscopic
projection.

Figure 1: Tree on Mars landscape
The scenario of Mars has one base facing the tree, a
spaceship, a rock and an Explore Mars Rover, as shown
in Figure 1. In this poster we will highlight the tools and
3D authoring techniques appropriate for real-time 3D
rendering, in large scale immersive virtual reality
settings. We will illustrate the various stages of
development and the achieved results.
2. AUTHORING CONTENT FOR CAVEH
The CaveH content authoring and development process
goes through several phases. The process starts by
modeling the 3D objects in an authoring tool such as
Blender [2]. Then, the content is exported to the Open
Scene Graph (OSG) [3] format, to be inserted in the
respective folders of GTKRadiant [4], the free game
engine used in the CaveH content authoring
environment. GtkRadiant is able to author and run the
3D scenario, where the OSG files are included, with
many authoring possibilities, like setting Newton physics
simulation, including collision detection and response
between 3D objects, key-frame forward kinematic
animation of characters and virtual camera and visual
effects proprieties, such as sky-dome and particle

systems and others. After the authoring is completed in
GtkRadiant, CaveHSpawner compiles the map, 3D
models and their proprieties in an OSG scene graph and,
upon error free compilation, generates an octree-based
volumetric organization of the scene-graph, with Level of
Detail nodes for the more complex 3D models, ready for
real-time rendering. Finally, the user is able to run the
CaveH runtime viewer application (in a single projection
system such as a PC or a multi-projection setting, such as
a CAVE), with the compiled map. OpenSceneGraph is the
adopted open source 3D graphics scene graph and toolkit,
specially developed for real-time rendering or large and
complex 3D scene graphs. The OSG models can be
generated in two different ways:
1. By producing OSG objects from scratch with the C++

programming language using, for example, Microsoft
Visual Studio C++ development environment.

2. By exporting 3D models from Blender with OSG
Exporter Script [2], based on the Python language.
This script transforms Blender models into OSG
objects.

The second method was the chosen option. All models
were created in Blender and then exported to OSG
objects. The content was developed on a computer with
the following specs: 1.60GHZ 2x CPU, 1 GB Ram, and
NVIDIA GeForce 7900 GT/GTO 512 MB graphic card.
As tools, we have used the following one: Blender,
Photoshop, GtkRadiant 1.5 and CaveHSpawner, under MS
Windows.
2.1 SETTING-UP BLENDER FOR REAL-TIME
Blender is an open source 3D content creation tool that
uses Python as its scripting language. Blender was
primarily designed for making non real-time scenes,
rendered with a ray tracer. It has a different way of
processing material properties and lights, which doesn't
quite fit with real-time formats, like Collada and OSG
own format. For real-time rendering we need to
understand how to set resources such as: materials,
normals, transforms and reference frames:
• Materials: applying materials for real-time use is

different than for non real-time applications. It is
better to use one material per model; this stands for
textures as well. Additionally, the texture has to be
mapped onto the object using UV coordinates.

• Normals: all normals should face outwards. If not, the
polygons will not be shown in the 3D view.

• Transforms and reference frames: without care, an
object will spin around its local reference frame.
Values can be set for Location, Rotation and Scale. If
Rotation gets non-zero values, this object is going to

285

Aveiro, 13, 14 e 15 de Outubro de 2010

rotate the way it is expected at runtime. All of this
can be adjust and fixed by using Apply Scale and
Rotation in Blender.

2.2 REAL-TIME TECHNIQUES
To map correctly the geometry we have used some
techniques normally adopted in real-time productions. In
the Mars landscape we have adopted a common
technique which raises soil with a Height Map. A Height
Map [5] is a grayscale image, where pure white
represents the highest points and pure black the lowest
points in the set. The Height Map is then applied onto a
subdivided plane, where the ground is raised or lowered
by controlling the grayscale vertices.
As for texturing, this is a relatively complex task. First
comes the UV mapping of the 3D models. Each object
produces shadows and reflections. These are calculated
by baking everything – the texture, shadows, shading and
ambient occlusion – in one simple UV texture. It is
critical to set appropriately the light and the ambient
occlusion in this phase.

Figure 2: The left image is the result of the Stencil
technique used in the right image.

For mapping the Mars soil we have used a Stencil
technique [5]. This method uses 3 textures to blend 2 via
the grayscale of another, as shown in Figure 2. The upper
texture blends dark areas of grayscale Stencil and the
lower texture blends white areas (the blend method used
is overlay). The final texture (left in Figure 2) shows
some after effects made on Photoshop. This grayscale
image was also used for the Height Map. There are
specific settings in the textures that must be considered
to obtain the maximum quality of the OSG files [3]. To
have alpha channel working well on OSG objects, the
texture must have 32-Bit color and has to be saved in a
format that holds the alpha channel, like .png or .dds.
The .dds file was the chosen format for two reasons: first,
this is the format for videogames proposed by Nvidia [6]
and second, this format can save the same detail in less
disk space than .png.
2.3 GTK RADIANT
After having exported and saved all 3DS and OSG files
into their own GtkRadiant folders, the next step was the
creation of the scene. First, all the collider parameters
were interactively defined for each 3D object and,
whenever necessary, Newton physics was enabled. Next,
we have included a representation of a first-person view,
where it is possible to modify a number of human scales,

motion parameters and fog options. We have also
included a light and a skybox, which simulates the
environment with dynamic clouds. A particle system
allowed us the insertion of flying leaves over the tree.
Lastly, we have used a trigger on the first-person view
location to load a movie in the beginning of the
interaction and a sound listener to set on the
environmental music. Finally, GtkRadiant can save a map
file (with all the authoring changes made), that will be
loaded in another tool, the CaveSpwaner, for compilation
and run-time execution.
 3. CONCLUSIONS
The development of 3D content for real-time rendering is
far different than for traditional ray-tracing rendering. For
real-time uses, there are a number of techniques that
requires different modeling skills and some degree of
originality. In real-time 3D rendering, we have to simulate
shadows and reflections by using texture baking, we need
to be aware of normals and polygons counts of our 3D
models and, last but not least, we need to have in mind the
level design related with the storyboard. In real time, there
is not a single camera to guide us by the desired key-
frame spots. Here the camera is the player that has the
possibility to see what he/she wants, so the level needs a
trustworthy environment and a world limit must be
imposed. The CaveH multi-projection system is a brand
new environment in Portugal for Immersive Virtual
Reality. A field of view of 180º provides more credible
immersions and makes the player believe that he or she is
in a real scale landscape. In this poster, we have described
an immersive virtual reality experience carried in the
CaveH of Lousal, highlighting specially the content
authoring techniques that are more appropriate for real-
time rendering. The experience allowed the learning of
some concepts about Scene Graph development, the
correct parameterization of modeling techniques for real-
time image synthesis and the integration of some classical
animation techniques that, in spite of being largely used in
the 90’s for computer graphics, are still in use today,
namely in gaming, like action triggering and key-frame
animation. Perhaps very soon the entertainment will be
projected on entire room walls with the same classic 90’s
video game techniques.
4. REFERENCES
[1] Bastos, P., Dias, M. S., "Experiência de Realidade
Virtual Imersiva no Ambiente CaveHollowspace do
Lousal", Proceedings of Interacção 2008 – 3ª Conferência
Interacção Pessoa-Máquina, Universidade de Évora, 15 –
17 Oct 2008.
[2] Blender. <http://www.blender.org/> and OSG Script.
<thttp://vterrain.org/Doc/Blender/>
[3] Martz, P., OpenSceneGraph - A Quick Introduction to
the Cross-Platform OSG API. Computer Graphics
Systems Development Corp., 2007.
[4] GtkRadian. <http://qeradiant.com/cgi-bin/trac.cgi>

[5] Luke A., 3D Game Textures, 2ª Edition. Focal Fress,
2009, 296-319.

[6] NVIDIA DDS Plug-in for Adobe Photoshop.
<http://developer.nvidia.com>

286

