
IPT & EGVE Workshop (2005)
R. Blach, E. Kjems (Editors)

Dynamic Bounding Volume Hierarchies for Occlusion Culling

Vít Kovalčík and Petr Tobola

Faculty of Informatics, Masaryk University Brno, Czech Republic

Abstract
We present an algorithm for rendering complex scenes using occlusion queries to resolve visibility. To organize
objects in the scene, the algorithm uses a ternary tree which is dynamically modified according to the current view
and positions of the objects in the scene. Aside from using heuristic techniques to estimate unnecessary queries,
the algorithm uses several new features to estimate the set of visible objects more precisely while still retaining
the conservativeness. The algorithm is suitable for both static and dynamic scenes with huge number of moving
objects.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Hidden surface removal

1. Introduction

The algorithm described in this paper provides an occlusion
culling using an occlusion queries. The occlusion query is a
hardware accelerated function present in the newer graphic
cards.

The common use of the function is as follows: Before
rendering an object, its bounding box is calculated and this
bounding box is queried for visibility. Only if the bounding
box is visible, the object will be rendered.

The function itself is simple. Once the function is ac-
tivated, the programmer can send several triangles to the
graphic card. The graphic card processes the triangles and
returns the number of pixels, that passed the z-buffer test
(i.e. which would be visible, if this was normal rendering).

However, while the principle is very simple, it is not triv-
ial to use it correctly to gain significant performance boost.
The main difficulty is a delay between issuing a query and
receiving the result. A possible solution to this problem is
to start several queries simultaneously (See figure1). This
approach can reduce the waiting time because the algorithm
does not need to wait for the old query results before starting
a new occlusion query.

Another effect, which has to be taken into account, is that
issuing a query costs some CPU and GPU time, so as few as
possible queries should be used. On the other hand, some-
times it is advantageous to use more queries to detect more
invisible objects, in order to save the time rendering them.

Figure 1: Illustration of two styles of using the occlusion
query.

2. Related work

2.1. Related work on occlusion culling

Many occlusion culling algorithms were introduced in the
previous years. One of the best known is called Hierarchical
occlusion maps [ZMHH97]. It’s principle is similar to using
occlusion queries, although it is purely software based ap-
proach: When rendering a frame, several suitable objects are
selected as occluders (usually those, which are big and/or
near the viewpoint). The occluders are rendered in the nor-
mal way. Then the hierarchical occlusion map is created and
remaining objects are tested against it and rendered if no oc-
clusion can be found.

After the occlusion query function appeared in the graphic

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org


Vít Kovalčík & Petr Tobola / Dynamic Occlusion Culling

cards, several occlusion culling algorithms exploiting this
function have been developed.

One of the first contributions is described in [HSLM02].
This algorithm requires the scene to be divided into a grid.
Each cell of the grid contains a list of objects that intersect
the cell. When rendering a frame the grid is traversed in
front-to-back order. The conservative visibility of each cell is
evaluated by issuing the occlusion query for the cell’s bound-
ing box. The cell objects are rendered only if the bounding
box is visible.

A different approach can be found in [HTP01]. Contrary
to the previous method, this algorithm works in screen-
space. The screen is divided into a low-resolution grid and
each cell is assigned a variable storing its state. A state can
have one of the following values:occluded,unoccludedor
unknown. The scene objects are processed in approximate
front-to-back order. Each object is projected onto the screen
and the state of intersected cells is determined. If anun-
knowncell was intersected, then the occlusion queries are
issued to get the actual state. If all of the cells areoccluded,
then the object is rejected. Otherwise the algorithm renders
the object and the state of intersecting cells is changed to
unknown. The algorithm is called "Lazy occlusion grid" be-
cause the occlusion queries are not issued immediately after
rendering the object, but only when the state of theunknown
cell is to be tested.

There is another group of algorithms calledapproxima-
tive. These algorithms are able to render the scene quickly
at the cost of omitting smaller objects, which could be seen
by the user, but their contribution to the final image is rel-
atively small. An example of such algorithm can be found
in [CKS02]. The scene is divided using a grid. The algo-
rithm maintains a priority queue of cells that are going to
be rendered. At the beginning of the rendering of the frame,
only the user’s nearest cell is in the queue. In each step, the
first cell in the queue is retrieved and tested for visibility. If
the cell is visible it is rendered and its neighbours are in-
serted into the queue according to their priority. Then the
algorithm continues in the next step. The whole scene can
be rendered perfectly in this way. However, it is possible to
specifybudget(time, number of polygons etc.) and stop the
algorithm immediately after the budget is reached. The al-
gorithm is not conservative because some low-priority ob-
jects might not be rendered. Nevertheless, we can assume
that these objects make only insignificant contribution to the
final scene image.

2.2. Related work on scene organization

In this paper, we focus on large dynamic scenes as well as
on the static ones. We will describe some techniques and im-
provements suitable to display scenes containing huge num-
ber of moving objects.

In the recent years, the majority of research effort has been

devoted to design efficient data structures for static scenes.
This approach can result in highly optimized data structures
allowing us to compute visibility quickly and very precisely.
Although such data structures can be very efficient, they are
usually substantially inflexible at the same time.

If a scene is modified, we have to update the data struc-
ture. The time required for the update can be considerably
higher than the time saved by the used data structure and
hence such data structures are not suitable for processing of
dynamic scenes.

An example of efficient data structures for static visibil-
ity culling can beBounding Volume Hierarchies(BVH) of
scene objects. The BVH consists of a tree structure of bound-
ing volumes of the scene objects. These bounding volumes
can be used as occlusion query objects. Because the object
for the occlusion query should be as simple as possible, the
bounding boxes are usually used.

Unfortunately, the necessity of updating the BVH after
every object position change leads to performance reduction.
Hence we designed a two-level tree data structure, which
allows us to select suitable occlusion query objects as well
as quick structure modifications and updates.

3. Algorithm

Our algorithm provides conservative occlusion culling using
heuristics and dynamic optimizations for the actual scene
state. The basis of our algorithm is described in [KS05]
(which is also similar to [BWPP04]). A tree structure is used
to organize objects in the scene. The tree nodes are hier-
archically traversed during the rendering and the occlusion
queries are used for testing visibility of nodes. To reduce the
number of occlusion queries, the algorithms use heuristics
to estimate unnecessary queries. For example, a node vis-
ible in a few recent frames will probably be visible again
in this frame. Hence we can skip the occlusion query and
render it immediately. Also, the algorithm is able to issue
several queries simultaneously and do some other work on
CPU, while the GPU is processing the queries. (For the full
details please see [KS05]).

The following sections describe improvements over the
previous algorithm.

3.1. Ternary tree

The older algorithm uses axis aligned BSP tree to organize
objects in the scene. The root node is split recursively and
each object is assigned to the smallest node that is fully sur-
rounding it. It is very simple to add objects into this structure
and also move objects from node to node after the object
has changed its position in the scene. However, it has also
some drawbacks. The most problematic situation is when
the root node is split and some objects are intersecting the
splitting plane. Such objects are assigned to the root node,

c© The Eurographics Association 2005.

92



Vít Kovalčík & Petr Tobola / Dynamic Occlusion Culling

which means they will be rendered every time the root node
is found visible, which is virtually in every frame. The same
problem arises also for nodes on the lower level.

To remedy this inconvenience, we are using ternary tree.
Every node can have zero or exactly three children. Two of
the children have the same role as described above. The ad-
ditional child contain objects, which was previously in the
parent node (i.e. objects intersecting the splitting plane.) We
don’t split this node any further. Now we form a bounding
box for group of objects intersecting the cutting plane, issue
a query for the visibility of this bounding box and perhaps
do not render such objects if the bounding box is not visible.
This was not possible using the binary tree.

Unfortunately, using a ternary tree has also a disadvantage
- managing the tree, generation of a bounding boxes and is-
suing another query costs some CPU and GPU time. On the
other hand, this is outweighed by the fact that we are ren-
dering less objects then before, which results in speed up in
most cases.

In our tests, the time required for managing the tree var-
ied from 0.2 % of the total frame time to nearly 30 % (in a
case, when huge number of objects crosses nodes’ bound-
aries very frequently).

Figure 2: Newly introduced node in a ternary tree holds ob-
jects, which intersect the splitting plane dividing the remain-
ing two nodes.

3.2. Shrinked bounding boxes

Another problem of the previous algorithm was that the
bounding box of the whole node was tested for visibility,
even when there was only one object substantially smaller
then the node itself. This means that probability of the visi-
bility of the node’s bounding box was much higher than the
probability of visibility of the object, so the object was ren-
dered unnecessarily in many cases.

To avoid this unnecessary rendering, we are using a con-
cept of TightBoxes. Under certain conditions we shrink
bounding box so that it fits the objects in the node perfectly.
Because the calculation of the TightBox may be expensive,
we calculate the TightBoxes only for nodes containing ob-
jects, which haven’t moved for a few frames. The Tight-
Boxes are then reused in the next frame (if there was no
change in the node and its children).

Figure 3: Bounding boxes of the nodes are shrunk to better
fit the objects inside.

3.3. Additional query

Behind this feature is a simple idea: Instead of issuing one
query for a node we can issue two separate queries. The first
query returns the number of visible pixels and the second
query returns the number of pixels covered on the screen in-
cluding the invisible ones. This feature alone does not im-
prove performance of the rendering (actually, it increases
the fill-rate, therefore the rendering is going to be slightly
slower), but then we have information that can be used to
modify the tree and optimize the rendering. The modifica-
tion is described in the next section.

3.4. Dynamic modifications of the tree

Because both the viewer and the objects move through the
scene, we slightly update the scene tree every frame to adapt
it to the current situation.

The additional query (described in the previous section)
can report a ratio of visible pixels to total pixels for any node,
which can be taken as a hint when altering the tree. The tree
is modified in the following way: All of the tree’s sibling
leaves are traversed and then split or merged according to
the following simple criteria.

• If both of the following conditions are met, the node is
split,

Pixelsvisible

Pixelstotal
≥ Rsplit

and

Ob jectsnode≥ Osplit

• If the following conditions hold for all sibling leaves of

c© The Eurographics Association 2005.

93



Vít Kovalčík & Petr Tobola / Dynamic Occlusion Culling

one parent, the leaves are discarded and the objects from
them are moved to the parent node,

Pixelsvisible

Pixelstotal
≤ Rmerge

and

Ob jectsnode≤ Omerge

The constantsRsplit, Osplit, Rmerge and Omerge were set
empirically to the following values:Rsplit = 0.25,Osplit =
12,Rmerge= 0.75 andOmerge= 5.

In addition to the described conditions, which can tell us
whento split a node, we can also change the wayhow the
node is split. In the common case, the node (which is axis-
aligned bounding box) is split in halves by its longest side.
In our dynamic splitting algorithm, we prefer a box side with
maximal inner product of(n.v) to be parallel with the split-
ting plane;n means normalized normal vector andv means
normalized camera orientation vector.

3.5. Detection of colliding queries

Our algorithm takes advantage of the fact, that several oc-
clusion queries can be active simultaneously. In other words,
we can solve visibility for several nodes in nearly the same
time as for one node. However, sometimes it may happen
that we need to check nodes, which occupies the same screen
space, so the objects in the nearer node can occlude the dis-
tant node. Unfortunately, the objects in the nearer node were
not rendered yet and the occlusion query for the distant node
may return that it is visible, while the objects in the nearer
node will hide it. The better solution could be to send the oc-
clusion query of the distant node after the occlusion query of
the nearer node is processed and the nearer node is rendered
if the occlusion query returns any visible pixels.

The test for detection whether two queries occupying the
same screen space is simple. Both queries are projected onto
the screen and their bounding rectangles are tested for inter-
section.

This strategy leads to the reduction of the number of ren-
dered objects. On the other hand, it may sometimes lead
to the unnecessary waiting until the first query is finished.
However, in complex scenes the waiting is compensated by
the fact that we know more precisely which objects are visi-
ble and thus we don’t spend time on rendering the invisible
ones.

4. Results

All the tests were performed on computer with AMD Athlon
MP 2600+ processor, 2 GB of RAM and NVIDIA GeForce
6800 GT with 256 MB of memory.

Two scenes were used for testing:

Figure 4: Projected bounding boxes forming rectangles on
the screen. The rectangles for bounding boxes number 1 and
2 overlap, so the farther node must wait till the nearer one
is processed. Bounding box number 3 can be processed in-
dependently in any time.

• The well-known power plant model with 2500 bunny
models, which are moving through the power plant. The
movement is simple and no collision detections are made
as this would require enormous CPU power.
The power plant was preprocessed to gain better control
over the occlusion of objects: The whole model was cut
into pieces by the uniform grid creating 11050 objects
with total of over 18 million triangles. (The original power
plant has less triangles, but we have split some of them
into more parts.) Every bunny has 69451 triangles, which
means the bunnies add other 173 million triangles.
We have tested three variants of this scene: The full power
plant with moving bunnies, the power plant with static
bunnies and the power plant alone.

Figure 5: The power plant model. Small spots are the bunny
models moving freely around the power plant.

• Scene with 2500 teapots (16 million triangles). Again, no
collision detections are made. Although the number of ob-
jects is high, there are a lot of holes, so it is difficult to
detect an occlusion.
Two variants have been tested: Teapots with some basic
movement and a static scene.

The results are summarized in table1. The algorithm
works well for huge scenes with a lot of complex objects.
It works well even when half of the objects in the scene is
moving, however it can also handle static scenes.

c© The Eurographics Association 2005.

94



Vít Kovalčík & Petr Tobola / Dynamic Occlusion Culling

Time (sec.) # of rendered objects # of occlusion queries
Scene New Old Ratio New Old Ratio New Old Ratio
Power plant + moving bunnies 394 557 0.71 408 812 0.50 103 27 3.82
Power plant + static bunnies 152 422 0.36 276 747 0.37 92 26 3.54
Power plant alone 135 249 0.54 272 656 0.41 91 25 3.64
Teapots (moving) 27 29 0.93 2289 2474 0.93 59 38 1.55
Teapots (static) 22 24 0.92 1884 2135 0.88 96 47 2.04

Table 1: Comparison of the introduced (new) and the basic (old) algorithm. "Time" column contains information about how
long it takes to fly through the particular scene using both algorithms. Remaining columns show the average number of rendered
objects and occlusion queries per frame.

Figure 6: The teapots scene.

An interesting point to note is that even when the new
algorithm uses more occlusion queries, it is faster than the
old one. The reason is simple: There are also more objects,
which are found to be invisible and the algorithm saves time
by not rendering them.

The Teapots scene caused some problems, because there
was only a small occlusion that was hard to detect. There-
fore the featured algorithm draws every frame nearly 2300
objects, on average, out of 2500 present in the scene. (How-
ever, it is still better than the older algorithm with an average
of 2470 rendered objects.)

We have included two graphs showing detailed progress
of the first test - fly through a scene with power plant and
2500 moving bunnies. You may see the time of rendering
of each frame (figure7) and also the number of rendered
objects (figure8).

In the graphs and in the table you may notice that although
the older algorithm renders twice as many objects as the new
algorithm, it is not twice as slow (but only about 1.4 times
slower). The reason is that the newer algorithm has to recal-
culate auxiliary data every frame, because of massive move-
ment in the scene. This is not necessary in the static scenes,
where the difference between the algorithms is much greater.

Figure 7: Comparison of rendering speeds of the basic and
the new algorithm.

Figure 8: Comparison of number of rendered objects in ba-
sic and in the new algorithm.

5. Conclusion

We have presented an occlusion culling algorithm based on
our previous one, but with many improvements. The new
version of the algorithm is still conservative, but can reduce

c© The Eurographics Association 2005.

95



Vít Kovalčík & Petr Tobola / Dynamic Occlusion Culling

number of rendered objects considerably. It is especially use-
ful on huge scenes and also natively supports scenes with
vast amount of moving objects.

In the current version, the algorithm uses several con-
stants, which were set empirically. As a future work, we
would like to calculate these parameters automatically, prob-
ably depending on the number of objects in the scene and
distances between them.

References

[BWPP04] BITTNER J., WIMMER M., PIRINGER H.,
PURGATHOFER W.: Coherent Hierarchical Culling:
Hardware Occlusion Queries Made Useful. Tech. rep.,
2004.

[CKS02] CORRÊA W. T., KLOSOWSKI J. T., SILVA

C. T.: Fast and simple occlusion culling.Game Pro-
gramming Gems 3, Charles River Media(2002).

[HSLM02] HILLESLAND K., SALOMON B., LASTRA

A., MANOCHA D.: Fast and simple occlusion culling us-
ing hardware-based depth queries. Tech. Rep. TR02-039,
Department of Computer Science, University of North
Carolina, 2002.

[HTP01] HEY H., TOBLER R. F., PURGATHOFER W.:
Real-Time Occlusion Culling with a Lazy Occlusion
Grid. Tech. Rep. TR-186-2-01-02, Institute of Computer
Graphics and Algorithms, Vienna University of Technol-
ogy, January 2001.

[KS05] KOVAL ČÍK V., SOCHOR J.: Occlusion culling
with statistically optimized occlusion queries. InWSCG
2005 short papers proceedings(2005), Skala V., (Ed.),
pp. 109–112.

[ZMHH97] ZHANG H., MANOCHA D., HUDSON T.,
HOFF III K. E.: Visibility culling using hierarchical oc-
clusion maps.Computer Graphics 31, Annual Conference
Series (1997).

c© The Eurographics Association 2005.

96


