
Eurographics Symposium on Parallel Graphics and Visualization (2004)
Dirk Bartz, Bruno Raffin and Han-Wei Shen (Editors)

A hierarchical and view dependent visualization algorithm
for tree based AMR data in 2D or 3D

Stéphane Del Pino

CEA DAM/DIF

Abstract
In this paper, a solution to the visualization of huge amount of data provided by solvers using tree based AMR
method is proposed. This approach strongly relies on the hierarchical structure of data and view dependent argu-
ments: only the visible cells will be drawn, reducing consequently the amount of rendered data, selecting only the
cells that intersect the screen and whose size is bigger than one pixel.
After a brief statement of the problem, we recall the main principles of AMR methods. We then proceed to the data
analysis which shows notable differences related to the dimension (2 or 3). A natural view dependent decimation
algorithm is derived in the 2D case (only visible cells are plotted), while in 3D the treatment is not straightforward.
The proposed solution relies then on the use of perspective in order to keep the same guidelines that were used
in 2D. We then give a few hints about implementation and perform numerical experiments which confirm the
efficiency of the proposed algorithms. We finally discuss this approach and give the sketch for future improvements.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

Keywords: tree based AMR, hierarchy, view dependent,
huge quantity of data

Acknowledgements: I would like to address special
thanks to J. FAVRE and J.-P. NOMINÉ concerning their com-
ments and advice.

1. Introduction

AMR (Adaptive Mesh Refinement) is a scientific comput-
ing technique that allows CPU time or memory saving using
automatic hierarchical mesh adaptation methods. Typically,
the grid will be “finer” where some quantity shows big vari-
ations and “coarser” elsewhere.

Being very efficient this method allows better resolution
of problems for the same CPU time and memory cost. So, the
quantity of data to post-process remains very important. We
have now to handle results of hydrodynamic computations,
produced by the HERA package [Jou04], using more than
100 millions of cells and 10 billions will be foreseen very
soon!

Processing those data is such a formidable task that
one can immediately consider that “classical ways” are not

enough. Some experiments were done using an SGI-Onyx
Infinite reality system with 10 Giga Bytes of memory run-
ning 2 pipes and OpenGL based packages on a 3200 � 2400
screen. Generating a single image of the total solution took
up to 10 minutes for 10 millions of cells while 5 millions
still runs interactively!

If the AMR visualization literature usually focuses on
avoiding visualization artifacts (isosurfaces cracks may ap-
pear at mesh level variations for example), the treatment of
huge amount of data is also investigated. Parallelism [Ma]
and dedicated volume rendering [KWWB

�
] are often the

considered techniques. In what follows, we will not deal
with that methods but introduce a view dependent algorithm
strongly relying on the hierarchical structure of the consid-
ered data.

2. What is AMR?

AMR methods are mesh adaptation techniques that use
hierarchical refinement or unrefinement procedures. They
were introduced by M.J. Berger in her PhD Thesis in 1982
[Ber82], but the reference paper was written with J. Oliger
in 1984 [BO84].

c
�

The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

S. Del Pino / A hierarchical and view dependent visualization algorithm for tree based AMR data in 2D or 3D

These methods lead to simple empirical ways of adapting
mesh to approximate the solution of problems. Mesh adap-
tation is a complex task, especially from the unrefinement
point of view, so the use of hierarchy makes it much simpler.

Various AMR approaches and ways of applying them
have been developed. The two main approaches and their
common applications will be presented here. Both of them
lead to manipulation of non conform grids (i.e. some ver-
tices may live inside some edges). These two approaches are
patch based AMR and tree based AMR. We will go deeper
into the second one which is our center of interest.

2.1. Patch based AMR

This method consists in superimposing hierarchical grids on
a mesh set in order to get a better approximation of the so-
lution in particular areas. Added grids will be denoted as
patches. This iterative process can be repeated for more ac-
curacy.

Patches are usually Cartesian rectangular meshes, many
of them may live in the same mother grid (see figure 1).

Figure 1: Example of hierarchical grids. Note that the sec-
ond level is composed of two grids.

It may be noted that using nested meshes can lead to re-
fined cells that may not need to be, but it allows the use of
simple variations of multi-grid algorithms (see [Bri87]). Fig-
ure 2 shows the relationship between patch based AMR and
multi-grid decomposition.

Figure 2: 1D grids. On the left: nested multi-grids. On the
right: patched based AMR.

Patch based AMR is for instance taken into account
by Chombo and its visualization module Chombo-Vis

[LVSS
�
03]. This paper does not focus on high performance

visualization but describes Chombo-Vis AMR special fa-
cilities. It deals with many functionalities: from different
level grid combination to seamless isosurface construction.

2.2. Tree based AMR

This variation of the same method is similar to wavelets. The
trick is to subdivide chosen cells of the mesh using some
criterion values.

Figure 3: tree based AMR mesh example over 4 levels. The
grid is refined along an interest line, usually a discontinuity.

A representation of this kind of adapted mesh is given in
figure 3. A common constraint that is imposed to improve
accuracy is to keep a security zone before going to a new
level. This means that if one traverses the mesh in a given
direction (x, y or z) a prescribed number n (typically from 3
to 5) of cells of the same level should be forward before a
change of level. Note also that no more than one level jump
is allowed along a given edge.

This approach is better suited for discontinuities approx-
imations (figure 3 enlightens it) and finite-volume-like nu-
merical methods (see [Lev02]) since only fluxes are ex-
changed between neighbor cells. Note that the method is un-
changed from the Cartesian case when cells belong to the
same level and is simply adapted (see figure 4) at level tran-
sitions.

Figure 4: Numerical flows are computed along smaller
edges. This can be interpreted as using the standard scheme
considering virtual cells — dashed on the figure.

Let us remark that both patch and tree based techniques

c
�

The Eurographics Association 2004.

50

S. Del Pino / A hierarchical and view dependent visualization algorithm for tree based AMR data in 2D or 3D

can equivalently be used on the same mesh. The main differ-
ence is due to the goal that drives them, and then changes to
the hierarchical structure of the mesh.

3. Data analysis

While we just stressed that the two AMR approaches could
be interpreted as one, we will now focus on the tree based
point of view. This means that the data we will deal with
will be refined hierarchically and cell by cell along discon-
tinuity lines and surfaces (respectively in 2D and 3D). The
following analysis is related to this particular case.

PSfra

Quad-tree like refinement

5 � 5 grid
Sub-domains

Figure 5: An example in two dimension of space: the com-
putational domain is composed of six non-overlapping sub-
domains. Each of them is meshed using a Cartesian grid us-
ing the same space steps.

Since we want to post-process data provided by scientific
computing, the type of numerical method may provide us
useful hints (see figure 5).
� Data come from a finite volume approximation, they are

described by piecewise constant functions (constant in
each cell).� The amount of data is such that it can only be obtained
using parallel computing. The computational domain is
divided in non overlapping sets. A partial solution is asso-
ciated to each of them and stored in an individual file —
a global reconstruction is usually not possible and may be
meaningless.� Each sub-domain is meshed using a Cartesian grid in such
a way that before refining them, their union forms a Carte-
sian uniform and conforming grid.� Refined cells are obtained using the same pattern for a
given computation. The subdivision is the same all along
each Cartesian direction (2, 3 or 4). Figure 6 shows pat-
terns that are commonly used in our case.

We will now study representative cases. For each of them,

Figure 6: Patterns: Different refinement patterns stored by
dimension and subdivision type. Up: 2D cases. Down: 3D
cases. From left to right: 2d, 3d and 4d patterns.

we sampled discontinuous functions of the form 1 � 1

� 1 � 2 ,
where � i are connected open sets and 1 � i are given by

1 � i �
�

1 if x 	
� i �
0 else.

In order to describe this case, we chose the domains this
way:

in dimension 2: two disks centered at the origin, for which
one border is perturbed using sinus functions to get details
at smaller scales (see figure 7);

Figure 7: 10 � 10 grid refined by a 3 � 3 pattern. Three lev-
els are shown. The mesh is colored using function variations.

in dimension 3: a sphere and a cylinder also centered at ori-
gin. This time, the cylinder’s surface is modified (see fig-
ure 8).

Those data sets represent typical configurations of hydro-
dynamic instabilities.

c
�

The Eurographics Association 2004.

51

S. Del Pino / A hierarchical and view dependent visualization algorithm for tree based AMR data in 2D or 3D

Figure 8: 10 � 10 � 10 mesh refined using a 3 � 3 � 3 pat-
tern. External mesh skin and isosurfaces are shown.

3.1. 2D data

We first focus on the 2D case, considering the most com-
monly used refinement pattern: 3 � 3. We refine the mesh
using up to 11 levels to approximate the function up to a
number of 30 millions of cells. It leads to the generation of
a case that requires the use of high performance visualiza-
tion. This experiment is detailed by table 1. To create these
data we assumed a 1000 � 1000 pixels screen — chosen for
the sake of simplicity but representative since it is close to
common screen resolutions.

3.1.1. Drawing all the data

Cells Pixels
lev. number prop. (%) by cell total (%)

0 37 4.25E-6 10 000 37
1 253 2.03E-5 1 111 28,1
2 1 838 2.11E-3 123 22,7
3 5 727 6.57E-3 13.7 7,86
4 18 686 2.14E-2 1.52 2,85
5 58 531 6.72E-2 1.69E-1 9.91E-1
6 177 629 2.04E-1 1.88E-2 3.34E-1
7 535 222 6.14E-1 2.09E-3 1.12E-1
8 1 610 669 1.85 2.32E-4 3.74E-2
9 4 838 126 5.55 2.58E-5 1.25E-2

10 14 522 040 16.7 2.87E-6 4.16E-3
11 65 369 430 75 3.19E-7 2.08E-3

Table 1: This table describes the cell repartition by level of
refinement in the particular case of the data represented by
figure 7. The grid uses 87,138,188 a total of cells.

This table is divided in two columns. The first deals with
cells, their level, number and proportion in the total set. The
second column deals with screen pixels. Pixel usage by cell
and by percentage are shown for each level.

Many remarks can be made here. First the number of cells
grows exponentially even if the refinement occurs only near
an interest line. 75% of the information is related to the last
level cells, but this just fills 0 � 002% of the screen, completely
negligible without zooming. Note that the table is divided
in two parts after level 4. This has been done to show after
which limit cells occupy less than one pixel and their sum
less than 1% of the screen. Looking carefully at the data,
one will see that 0.03% of the data fills 98.5% of the screen,
so that 99.97% of information generates 1.5% of the image.

Remark 1 It is important to note that most of the informa-
tion is concentrated in data whose contribution to the final
image is very small. The effort made to associate an image
to the numerical solution is concentrated on “invisible” cells
drawing.

This analysis lets us think that getting a good represen-
tation of the data may not need to use all of them. We just
considered the initial situation: drawing the whole computa-
tional domain. The user’s interest is to go into his data to see
details and to understand them better.

3.1.2. Zooming and windowing

We will now discuss the extreme case which consists of as-
suming that the smallest cells occupy at least a pixel on the
screen.

Let us then suppose that the zoom factor is such that any
last level cell can occupy a pixel. Since subdivision pattern
is 3 � 3, each cell of the previous level will use nine pixels.
The surface on the screen will be then multiplied by nine for
each lower level.

Following the example, a cell surface will be given by
s � 911 l at level l. So a single level 0 cell would require
31 billions of pixels to be represented!

Let us now consider the worst case: every visible cell at
the screen belongs to level 11. Only 1 million of them can
simultaneously be plotted, so even in this case, this corre-
sponds to 87 times less cells than the total.

Table 2 tries to show the behavior of a standard zooming
along a discontinuity line.

The zoom considered here is the extreme case where the
smallest cells (level 11) are visible. In this case, the refined
cells draw a line that crosses the screen — the discontinuity
line. One can immediately see that the number of needed
cells is negligible compared to the total number.

3.2. 3D data

We now investigate the 3D case. As we will see the addition
of a third dimension will dramatically change the analysis.

For this study a 1000 � 1000 screen will still be used and
we will only consider parallel projection mode. We will also
suppose that each cell has two faces parallel to the screen,
the others being horizontal or vertical.

c
�

The Eurographics Association 2004.

52

S. Del Pino / A hierarchical and view dependent visualization algorithm for tree based AMR data in 2D or 3D

Visible cells
level number surface

11 9000 9000
10 1998 17982

9 666 53946
8 222 161838
7 74 485514
6 25 1476225

Total 11985 2204505

Table 2: Zoom simulation in a refined area around a discon-
tinuity line — surface is given in pixels.

Remark 2 Those assumptions are not critical but simplify
the presentation. This way cells’ projection to the screen will
be rectangles.

3.2.1. Criterion choice

In the previous paragraph, direct visibility was our discus-
sion criterion. In 3D this is more subtle since many cells
may be hidden but very important to the image generation
— think to isosurfaces.

One could have considered the volume of the cells, and
this would have lead to the same results as in 2D; but in
3D visualization, projection step cannot be put away and
changes the rules. This criterion would not give us relevant
information.

So one criterion will be a potential visibility. This means
the fact that a cell is large enough to be visible on the screen
if nothing hides it.

3.2.2. Analysis

For this study, we will consider a two part table as well. First
the cells, their level, number and level part. Then, pixels that
would be used for the projection of one cell. Since this pro-
jection is a square we will compute an edge length which
will help us to better understand the situation. The results
are presented in table 3.

Cells Pixels
level number proportion (%) face edge

0 293 1.16E-4 10 000 100
1 9 781 3.88E-3 1 111 33.3
2 155 791 6.18E-2 123 11.1
3 1 648 095 6.54E-1 13.7 3.70
4 16 480 523 6.53 1.52 1.23
5 233 783 199 92.7 0.169 0.41

Table 3: Cells presence by refinement level. The grid counts
252,077,682 cells (see figure 8).

The first fact to note is the number of levels. Nearly three

times more cells than for the 2D example is achieved in less
than 6 levels whereas 12 were necessary in 2D. The cell
number grows definitively faster in 3D. From this it can im-
mediately be deduced that the smallest 3D cells will be much
larger than the smallest in 2D.

The second remark is in some way contradictory: as pre-
viously the great majority of the information is composed of
non visible cells — nearly 93% — but it is only carried by
one level. Moreover, if those cells are individually not vis-
ible, every cell would be potentially visible with a slightly
larger screen (� 2 � 5).

Another bad news is the number of cells whose projec-
tion could cover more than one pixel on screen: more than
18 millions. This is a lot!

Finally all cells contained in the last level could be located
on a face of the domain and be in front of the camera: their
contribution to the image would then be 100%.

3.3. Synthesis

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2 4 6 8 10 12

nu
m

be
r o

f c
el

ls

level

"cas-2d-3"
"cas-3d-3"

Figure 9: Comparison of the exponential growing of the
number of cells according to the level in 2D and 3D — log-
arithmic scale.

Those two examples showed radically different behavior
for the 2D and 3D cases. If 2D results could have been easily
conjectured, the 3D case is not intuitive. The main reason for
this difference is the data scale. It is almost sure that twelve
3D levels would lead to the same kind of repartition but at a
different scale — the number of non visible cells would be
of gigantic size (see figure 9).

A 2D solution is now easy to propose and since we would
like to use the same kind of approach in the 3D case, we will
have to introduce a new ingredient.

4. A strategy

The importance of the hierarchy has been stressed. We will
first introduce the 2D algorithm and then propose an exten-
sion in the 3D case.

c
�

The Eurographics Association 2004.

53

S. Del Pino / A hierarchical and view dependent visualization algorithm for tree based AMR data in 2D or 3D

For the sake of simplicity we will give the following defi-
nition.

Definition 1 We will call mother cell a cell that has been
subdivided, and daughter cell a cell result of subdivision.

Note that according to definition 1 a cell can be daugh-
ter as well as mother, which is actually the case in our data
structure.

In the following, we will assume that the mesh contains
all the hierarchical structure: mothers, daughters and non-
refined level 0 cells. The hierarchy of data indicates that the
implementation will have to manage sd-trees, where s is the
subdivision and d the dimension of space.

4.1. In two dimensions of space

The analysis made in section 3.1 is promising. We recall here
that our goal is the visualization of huge amount of data. As
we will see the proposed algorithm’s efficiency will grow
according to the complexity of the problem.

4.1.1. Level of details

When performance improvement in visualization is consid-
ered, three classical approaches are generally possible.
� The first is the easiest — from the user point of view. It

consists in using better hardware, but as it was noticed in
introduction, even the best video cards do not answer to
the question. This situation may continue since while card
performances will improve computation size will grow
accordingly.� The second way is a fashionable research subject. As in
many other fields requiring huge CPU resources, use of
parallel computing seems attractive. But even if some
recent research work lead to promising results, perfor-
mances are still lagging behind. Chromium-like tools
[HHN

�
02] allow performance improvement but the scal-

ing is not linear — more precisely, n processors will not
lead to a n-time speed-up.� A third idea has been extensively explored in terrain
visualization[LKR

�
96]. It consists in decimating cleverly

the data — depending of the view point — to allow navi-
gation into it. This level of detail approach is the strategy
we chose. But, if the basis ideas are close, our field is quite
different and more straightforward through some aspects.

1. The goal of terrain visualization is real-time display.
We just seek reasonable interactivity.

2. The quality criterion is not the same: we want the best
representation every time (accuracy preservation).

3. We want to be able to change the view point, the qual-
ity of the transition is not our main concern.

4. Our data, has shown previously natural hierarchy: we
do not need to find a way to decimate it. This makes a
big difference with terrain visualization. We just need
to exploit the data hierarchy.

Level of detail (LOD) approaches are not new by them-
selves. Almost all visualization packages provide deteriorate
images for transitions, but this is done to improve user com-
fort. The originality of the work lies in there: we do not pro-
pose a new LOD management algorithm, but a way to gen-
erate our image using the minimum amount of data without
any deterioration of the final image.

4.1.2. Visualization view point

In order to decimate information, we will use a criterion
which is as intuitive as possible, and show that no better
way can be achieved. Some ergonomic details can still be
improved in a second time.

A cell will be visible if:
� its projection intersects the screen,� its image is bigger than a pixel,� if it is a mother cell, her daughters do not use more than

one pixel each.

Let us now precise an important fact: if a visible cell does
not correspond to a leaf of the tree, the data it will contain
will be the mean of its children.

This is very important since it is consistent with the finite
volume method which generated the processed data — finite
volume data represent the mean of a quantity inside a cell.

Remark 3 The obtained image will be more correct than the
one provided using the full data through the graphic pipeline.

The remark 3 is easy to understand. One of the bottlenecks
of visualization is rasterization, so many tricks are used to
optimize its speed. A consequence is that one cannot know
a priori which cell’s data will be used — any child of the
mother cell can be chosen, depending on the rasterization
algorithm.

Figure 10: Only relevant data is drawn. The colored re-
gion represents the screen. Plain lines indicate useful cells,
dashed ones are for unused cells.

The method is enlightened by figure 10. This will obvi-
ously lead, for implementation, to the management of trees
as shown in figure 11.

Before detailing the method that is effectively used, let us

c
�

The Eurographics Association 2004.

54

S. Del Pino / A hierarchical and view dependent visualization algorithm for tree based AMR data in 2D or 3D

Drawing window

A
llow

ed
deepness

Figure 11: The implementation consists in browsing a tree
by satisfying criteria. Black nodes show drawn cells. In three
dimensions of space, the same implementation will be used.
Only the criteria will be changed.

remark that before browsing the tree goes deeper from the
root to the leaves, a maximum depth will have to be pre-
computed — this is possible since resolution, point of view
and zoom factor are known. For instance, it can consist in
computing the size of the window in the physical space, it
is then easy to compute the size of the cells in pixels. The
maximum depth will correspond to the cells whose size is
the smallest but still greater than 1 pixel. The algorithms 1
and 2 implement the method.

Algorithm 1 Tree browsing
Compute maximum depth
for all grid’s cell do

if the cell intersects drawing window then
call algorithm 2 using the cell as its argument

end if
end for

Algorithm 2 Going deeper in the tree
Require: A cell as argument

if maximum depth is reached or cell is a leaf of the tree
then

Plot the cell
else

for all daughter cell do
if daughter cell intersects view window then

call algorithm 2 with daughter cell as argument
end if

end for
end if

4.2. In three dimensions of space

The algorithm proposed in 4.1 is efficient. One can figure
it before doing any numerical tests: the number of plotted
cells is bounded by the screen number of pixels. One could
obviously think that same argument applies also in 3D. In
fact, it does not!

The first reason is that we do not want to re-implement all
visualization algorithms. To find relevant cells this should be
done to respect the 2D case rule — one could consider the
example of isosurfaces.

The second reason is even more critical: modern visual-
ization packages make extensive use of transparencies. This
is an essential feature that cannot be ignored. With trans-
parency, some hidden cells may have contribution to the im-
age. It is now easy to figure out that in dimension three:

Remark 4 The number of useful cells is not bounded by the
number of screen pixels. In fact, no absolute bound can be
found similarly to the 2D case.

4.2.1. Perspective

Nevertheless, we still want to use the same kind of algorithm
that was used in 2D. Taking care of remark 4, a solution con-
sists in finding a way to naturally remove more cells. Unlike
the 2D case, we will not be able to guarantee an upper bound
to the number of used cells.

Since adding the third dimension is more challenging, we
should use a third dimension argument to decimate data.
This argument is perspective.

We will not be able to give here the same kind of demon-
stration as in two dimensions, but arguments that will ensure
method improvement.

The use of perspective has two consequences that both
lead to reduction of visible cells:

1. since perspective projection uses a focal point only cells
that intersect an influence cone will be visible.

2. Perspective has the effect that a given object projection
surface decays as the object goes away from the eye po-
sition.

We will take even more advantage of these two points thanks
to the a priory classification of the cells. For each size of cell,
we can actually define a cone and a distance of visibility (see
figure 12).

Figure 12 shows nested sectors. Each of them is associ-
ated to a cell size (or level) and pre-computed. Note that
sectors get smaller while cell size decays. Considering this
4 levels example, one can check that only a few cells will be
used — none of the third level of refinement cell intersects
the smallest sector. This seems to give a good answer to our
problem.

Using this new cell selection criterion, we will also use the

c
�

The Eurographics Association 2004.

55

S. Del Pino / A hierarchical and view dependent visualization algorithm for tree based AMR data in 2D or 3D

focal point

Screen

Ol

Rl

α

Figure 12: Use of perspective allows natural decimation of
the cells. Note different origins Ol defining each level cone.
This is an implementation trick: each sector corresponds to
the admissible positions of cells’ mass centers.

algorithms 1 and 2. Implementation will also take advantage
of those similarities: the same code will be used for both 2D
and 3D, the only variation will be the tree browsing criterion.

4.3. Additional remarks

We have proposed solutions for both 2D and 3D cases that
allow lower cost image rendering without quality lost. Since
our goal is also to provide interaction to the user, we have to
ensure that data extraction — through tree browsing — will
not be too expensive. In fact as numerical simulations have
shown, this cost is marginal (see section 5).

It could be argued that since the tree browsing is linked
to the drawing window size, the number of useful cells will
grow exponentially with it; but a simple ergonomic improve-
ment consists in changing minimum cell size in pixels: big-
ger values implies better performances removing details.

Finally, since the data set is reprocessed each time the
view point changes, all visualization information is also to
be rebuilt — this means recomputing isosurfaces for exam-
ple. This could also be optimized by computing isosurfaces
incrementally for instance.

5. Implementation and numerical results

We will now discuss some aspects of the implementation and
give results of numerical experiments confirming the choices
that were made.

To perform those numerical tests we wrote a tool using
C++ [Str97] and VTK [SML03]. Performances are reached
by extensively using template techniques. This allows for in-
stance to generate predefined trees associated to each refine-
ment pattern. The strategy here is to store all the information
into memory in a first time. This is very expensive so those
tests were performed on a 64Gb memory machine.

It is not easy to provide numerical tests as there is no ref-
erence solution to compare with — drawing of the complete
data set may take “infinite” time. To enlighten the perfor-
mances we will plot refreshing time that proves interactivity.
Following this idea the results are presented by figures 13
and 14.

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10

nu
m

be
r o

f d
is

pl
ay

ed
 le

av
es

camera displacement

2D case
3D case

Figure 13: Number of cells that were used to generate im-
ages for 10 view point modifications. 2D and 3D results are
compared — logarithmic scale.

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

di
sp

la
y

tim
e

(s
ec

on
ds

)

camera displacement

2D rendering
2D browsing
3D rendering
3D browsing

Figure 14: Comparison of soft rendering and tree browsing
for 10 view point modifications. 2D and 3D cases are pre-
sented using a logarithmic scale. View points are the same
that for figure 13.

Those results have been obtained by navigating 10 times
into the data provided by tables 1 for the 2D test and 3
in three dimensions. Since the algorithm stores the whole
information into memory, those tests have been performed
using a 64Gb memory Itanium-II and exporting the dis-
play on a SUN blade workstation without 3D hardware in
a 1024 � 728 window.

For both cases, data extraction from the tree runs signif-
icantly faster than soft rendering — a factor 3 is often ob-
served.

Dimension two shows very impressive results:

c
�

The Eurographics Association 2004.

56

S. Del Pino / A hierarchical and view dependent visualization algorithm for tree based AMR data in 2D or 3D

� no more than 20 thousands cells, of the 85 millions origi-
nal cells, are used after each camera movement.� The tree browsing requires less than 0.1s, this is close to
real time.

3D results may appear weaker since the amount of used
cells remains important: nearly one million in the worst ob-
served case, but even in this case, the number of selected
cells corresponds to a reduction by a factor 250 of the total
number of cells. Interactivity is not really obtained: image
requires here up to 19 seconds, but most of this time is ren-
dering. Data extraction never needs more than 3 seconds.
The use of 3D hardware should provide better results —
this was not possible there since no workstation had enough
memory.

6. Conclusion and future work

We have answered the question of visualization of huge
quantity of tree based AMR data with an appropriate algo-
rithm. We showed that this algorithm could be applied in
both 2D and 3D — if adding the perspective in the later
case. If 2D experiments showed some kind of optimality, 3D
results may not be completely satisfying — interactivity is
however very close. The main reason is that no upper bound
can be provided to the number of useful cells to a given
image. However, it is important to note that the number of
used cells could be further reduced by changing some cri-
teria (minimum number of pixels to draw a cell, focal point
of the camera to change perspective. . .), and then allow to
browse more interactively the data and only get better qual-
ity image when required by the user.

This approach can also be coupled to more standard tech-
niques like parallelism to improve performances particularly
in the 3D case.

Keeping all the information into memory is not realistic.
We are now following the path of E. COLIN and G. HAR-
REL [CH03], who experienced a similar view dependent al-
gorithm but implemented in an out-of-core way based on the
rewriting of the data in an HDF5 file that stores the hierar-
chical information. Ongoing work consists into merging the
two approaches to improve performance as well as memory
consumption. This should consists in managing distributed
trees: a part in memory and the other living on the disk.

Future work will go further in this direction since many
improvements can already be foreseen: parallel browsing of
the trees, cache management policies, for instance.

References

[Ber82] BERGER M.: Adaptive Mesh Refinement for
Time-Dependent Partial Differential Equations.
Ph.d. dissertation, Stanford University, 1982.
Computer Science Report No. STAN-CS-82-
924.

[BO84] BERGER M., OLIGER J.: Adaptive mesh
refinement for hyperbolic partial differential
equations. Journal of Computational Physics
53 (Mar. 1984), 484–512.

[Bri87] BRIGGS W. L.: Society for Industrial and
Applied Mathematics, A Multigrid Tutorial.
Philadelphia, PA, 1987.

[CH03] COLIN E., HAREL G.: Étude de techniques
de visualisation haute performance: Applica-
tions à des grandeurs sur maillage 2D-3D AMR
“tree-based” à l’aide de VTK et de HDF5.
Tech. rep., CEA/DIF (internal report), 2003.

[HHN
�
02] HUMPHREYS G., HOUSTON M., NG R.,

FRANK R., KLOSOWSKI J. T., AHERN S.,
KIRCHNER P. D.: Chromium: A stream-
processing framework for interactive rendering
on clusters. In ACM SIGGRAPH (2002).

[Jou04] JOURDREN H.: HERA: an AMR hydrodynamic
plateform for multiphysics simulation. Lecture
notes in computational engineering, Springer,
2004.

[KWWB
�
] KREYLOS O., WEBER GUNTHER O. H.,

WES BETHEL E., SHALF J. M., HAMANN B.,
JOY K. I.: Remote interactive direct volume
rendering of amr data.

[Lev02] LEVEQUE R. J.: Finite volume methods for hy-
perbolic problems. Cambridge Texts in Applied
Mathematics. Cambridge: Cambridge Univer-
sity Press. xix, 558 p., 2002.

[LKR
�
96] LINDSTROM P., KOLLER D., RIBARSKY W.,

HODGES L. F., FAUST N., TURNER G. A.:
Real-time, continuous level of detail rendering
of height fields. In ACM SIGGRAPH 96 (Au-
gust 1996), pp. 109–118.

[LVSS
�
03] LIGOCKI T. J., VAN STRAALEN B., SHALF

J. M., WEBER G. H., HAMANN B.: A frame-
work for visualizing hierarchical computations.
In Hierarchical and geometrical methods in sci-
entific visualization. Springer, 2003, pp. 197–
204.

[Ma] MA K.-L.: Parallel Rendering of 3D AMR
Data on the SGI/Cray T3E. Tech. rep., Institute
of Computer Applications in Science and En-
gineering, Mail Stop 403, NASA Langley Re-
search Center Hampton, Virginia.

[SML03] SCHROEDER W., MARTIN K., LORENSEN B.:
The Visualization Toolkit An Object-Oriented
Approach To 3D Graphics, 3rd Edition. Kit-
ware, Inc. publishers, 2003.

[Str97] STROUSTRUP B.: The C++ programming lan-
guage, 3nd ed. Addison-Wesley, 1997.

c
�

The Eurographics Association 2004.

57

