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Abstract
This paper proposes an on-line incremental 3D reconstruction framework aimed at fulfilling the needs of telep-
resence or human machine interaction applications. The research presents a teleconference system that improves
and induces the feeling that persons are in the presence of each other. A free viewpoint method, based on realistic
user’s appearances, is proposed to simulate a real face-to-face meeting. The contributions are: a new incremental
version of Crust algorithm that enables incremental fusion of sensor data and a confidence-based method that
automatically decides whether or not to integrate newly acquired data in the existing model based on measure
uncertainty and novelty. To avoid the classical stereo vision reconstruction problems, the method bases on hybrid
sensors to acquire simultaneous depth information and the corresponding texture image (e.g. kinect). This enables
the alignment between acquired data and pre-adquired model by maximizing a criterion that is related with the
matching between visual features and between acquired shapes. A mesh based representation enables the use of the
surface topological geometric information during the data model integration process.
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1 INTRODUCTION

Widely used video teleconference applications (ex: Cisco
WebEx, Citrix GoToMeeting, Microsoft Skype, Google
Hangouts or Apple Facetime) are not replicating impor-
tant real face-to-face meeting cues, like eye-to-eye contact
establishment, gesture reconnaissance, body language or
facial expressions. Nevertheless, recent advances on sens-
ing, display and computation technology are creating the
ideal condition for affordable consumer 3D applications in
Augmented Reality (AR), Virtual Reality (VR) or Human
Machine Interactions (HMI). Our application concept goal
is depicted in Figure 1, where user’s locations setup, ide-
ally equipped with displays, video cameras, depth sensor,
microphones and speakers, enables users to communicate
and interact remotely experiencing the benefits of a face-
to-face meeting in full size. It includes a 3D capture, re-
construction and virtual view synthesys display system.

There are some notable works that realistically exploit
the user’s appearance for tele-immersion like those de-
veloped at UC Berkeley [Kurillo 08] and at GrImage at
INRIA [Petit 09]. Both use video cameras array to per-
form real-time full body 3D reconstructions leading to
some weaknesses, like: reconstruction problems due to
the lack of accuracy in low-texture or repeated pattern re-
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Figure 1. Face to face meeting through technology me-
diation, line of sight preserving method. Overview of the
reconstruction algorithm that aims to continuously gen-
erate a realistic body model, transfer the model and re-
construct on a remote common display or virtual environ-
ment according, each user’s viewpoint by a tracking pro-
cess. The proposed real-time 3D full reconstruction sys-
tem combines visual features and shape-based alignment
between consecutive point clouds while the mesh model
representation is updated incrementally using a new Crust
based algorithm.
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gions, high cost acquisition data setups, high power com-
putational requirements, and their unsuitability for do-
mestic use. Recent RGB-D reconstruction related works
are using alignment and integration approaches based on
SLAM sparse methods [Beck 13][Almeida 13]. Henry et
al. [Henry 12] combine visual feature matching with ICP-
based pose estimation to build a pose-graph which they
optimize to create a globally consistent map. Newcombe
et al. [Newcombe 11] presented an improved accurate
solution known as KinectFusion which uses a new algo-
rithm for real-time dense 3D mapping. KinectFusion inte-
grates depth maps from the Kinect into a ”truncated signed
distance function” (TSDF) representation. The required
alignment to fuse the depth maps is based on the iterative
closest point algorithm (ICP), that runs on a GPU for ob-
taining real time performance.

Our contribution is a real-time 3D full reconstruction sys-
tem that combines visual features and shape-based align-
ment between consecutive point clouds while the mesh
model representation is updated incrementally using a new
Crust based algorithm.

The paper is organized as follows. Section 2 describes the
proposed reconstruction methodology, section 3 presents
some experimental results and discussion and, section 4
presents the future work and conclusions.

2 MESH GENERATION

Figure 2. Mesh model using Crust triangulation

An incremental adaptation of Crust algorithm is proposed
and enables the addition of new 3D points without hav-
ing to recompute previous generated meshes. The stitch-
ing process relies on integrating new mesh poles as new
vertices, on triangulation step and compute triangles only
where both surfaces share vertices.

Given a set of registered points X ∈ R3 sampled from an
object surface S, it is possible to approximate its shape by
a triangle mesh. The approach, based on a modified Crust
algorithm [Amenta 98], uses a set of points P from the me-
dial axis (polos) to extract a subset from the Delaunay tri-
angulation of X that approximate S. The polo points, ob-
tained from the Voronoi vertex or triangles average outer
normal’s, are positive (p+) if they lie on the convex side of
the surface and negative (p−) otherwise. Once computed
the Delaunay triangulation of X ∪P, the surface mesh is

estimated by extracting the set of simplices whose vertices
belong to X . The proposed approach adds an incremental
characteristic to the Crust algorithm as it is efficient viable
to add new vertices to a Delaunay triangulation.

Assuming that a set of points Xt were already processed
by the Crust algorithm, the set of poles Pt and the Delau-
nay triangulation are also available [Almeida 11]. To add a
new set of sample points Xt+1 to the surface mesh, avoid-
ing a complete mesh recalculation, the following steps are
performed:

Algorithm 1 Crust incremental algorithm
1: Pt+1=poles of Xt+1
2: Add Pt+1 ∪ Xt+1 as new Delaunay triangulation ver-

tices
3: Extract triangles whose vertices belong to Xt ∪Xt+1

The procedure can be applied repeatedly to accommodate
any number of point sets Xi. Nevertheless to avoid progres-
sive grow in the number of mesh vertices, points closest
to the mesh vertex (i.e. under a given Euclidean distance
threshold) are deleted from the input point cloud before the
incremental Crust step. Figure 2 illustrates a mesh model
using the Crust approach.

Multiview 3D Scan: Recent depth sensor devices, like
XBOX Kinect provide 3D measurements and also RGB
data, enabling the use of 2D image algorithms. It is possi-
ble to improve the 2D feature mapping between consecu-
tive RGB images, associating the respective depth data and
creating a 3D feature tracking. The Xbox 360 R© Kinect

TM

Sensor combines a RGB camera and a structured light 3D
scanner, consisting of an infrared camera and an infrared
(IR) laser projector. The depth measurement principle is
based on a triangulation process [Freedman 10].

Registration:

The registration process enables to align several 3D point
clouds into one same referential to create a global model
(Figure 3(b)). To register new 3D point clouds, acquired
from different point of views, we perform algorithm 2 steps
(Figure 3(a)):

Algorithm 2 Registration algorithm
1: Select one 3D point cloud shape to be the approximate

3D mean shape (ex: scan 0).
2: Align the 3D point cloud shapes:

- Compute the centroid of each 3D point cloud shape
(or set of invariant features).
- Align all shapes centroid to the origin.
- Normalize each shapes centroid size.
- Compute the rigid-body transformation using expres-
sion (5) to (7) to obtain the rotation R and translation t
which best aligns both 3D shapes.

3: Apply the calculated transformation to obtain new ap-
proximate 3D mean shape

Considerer the existence of two corresponding 3D points
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Figure 3. (a) Registration simplified flow. (b) Algorithm overview modules

sets {xt
i} and {xt+1

i }, i = 1..N, from consecutive t and t+1
scans, which relationship is given by equation (1):

xt+1
i = Rxt

i + t+vi
(1)

ε2 =
N

∑
i=1

∥∥∥ xt+1
i − Rxt

i− t
∥∥∥

2

(2)

R represents a standard 3x3 rotation matrix, t stands for a
3D translation vector, and vi is a noise vector. The optimal
transformation R and t that maps the set {xt

i} on to {xt+1
i }

can be obtained through the minimization of the equation
(2) using a least square criterion. The least square solution
is the optimal transformation only if a correct correspon-
dence between 3D point sets is guaranteed. Complemen-
tary methods are used to robust the correspondence (e.g.
RANSAC). The singular value decomposition (SVD) of a
matrix can be used to minimize Eq. (2) and obtain the rota-
tion (standard orthonormal 3x3 matrix) and the translation
(3D vector) [Arun 87][Challis 95][Eggert 97]. In order to
calculate rotation first, the least square solution requires
that {xt

i} and {xt+1
i } point sets share a common centroid.

With this constraint a new of equation can be written using
the following definitions:

xt
i =

1
N

N

∑
i=0

xt
i xt+1

i =
1
N

N

∑
i=0

xt+1
i (3)

xt
ci = xt

i−xt
i xt+1

ci = xt+1
i −xt+1

i (4)

ε2 =
N

∑
i=1

∥∥∥ xt+1
ci − Rxt

ci

∥∥∥
2

(5)

Maximizing Trace(R H) enable us to minimize the gener-
ated equation (5), with H being a 3x3 correlation matrix

defined by H = xt+1
ci (xt

ci)
T. Considering that the singu-

lar value decomposition of H results on H=UDVT , then
the optimal rotation matrix, R, that maximizes the referred
trace is R= U diag(1; 1; det(UVT )) VT :

R = UVT (6)

The best translation that aligns {xt+1
i } centroid with the

rotated {xt
i} centroid is

t = xt+1
i −Rxt

i (7)

Model Mapping

Suppose that the mapping from the world coordinates to
one of the scans of the sequence, is known (ex: scan 0)
and it is represented by the transformation 0Tw. As de-
scribed before, for any consecutive pair of scans (t, t+1)
from tracked points it is possible to estimate rotation and
translation and combine them into a single homogeneous

matrix 4x4, t+1Tt, T =

[
R t
0 1

]
.

Therefore it is possible to compute equation ( 8):

iT0 =
iTi−1

i−1Ti−2 . . . ..
1T0

iTw = iT0
0Tw (8)

To update the reconstructed model, each acquired 3D point
set is transformed to the world coordinate system using
iTw. This alignment step adds a new scan to the dense
3D model. Alignment between successive frames enables
to track the body position over small displacements.

Correspondence: the described 3D registration method re-
quires the knowledge of point correspondences between
the existing 3D points set and the newly acquired point
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set. To solve this correspondence problem, we take ad-
vantage of the fact that RGB-D sensor provides simultane-
ously scene 3D information and respective 2D image. We
propose the use of ”Robust Image Features” (like Bay’s
Speeded Up Robust Features (SURF) [Bay 06]), which en-
ables the identification of one same point in consecutive
images. The association of a visual feature with its 3D
point, enables to establish a match between consecutive 3D
point clouds.

Although the SURF features enable the establishment of
correspondences between points from both sets, illumina-
tion and viewpoints changes, together with sensor noise,
among others, induce variations on those extracted features
that may contribute to errors in the pairing process. This
may indeed destroy the transformation estimation process
by introducing unacceptable error or leading to no solu-
tions.

For this reason we use the RANSAC algo-
rithm [Fischler 81] to remove false correspondent point
pairs that wrongly biases the rigid body transformation es-
timation. The approach randomly samples three 3D points
correspondent pairs from consecutive scans and iteratively
estimates the rigid body transformation [Arun 87] until
find enough consensus or reach a maximum number of
iteration based on the probability of outliers.

The registration method with outliers removal is described
in following algorithm 3.

Integration: A new 3D mesh acquired a from different
point of view and registered into a 3D global model can
lead to two situations: (1) some non-overlapped trian-
gles contains new information for the 3D model and (2)
some overlapped triangles might contain redundant data,
or more confident data useful for the model refining. To
choose which information is relevant, we evaluate the data
based on the uncertainty of range sensor. Sensor accuracy
measures are dependent on the incident angle between the
measuring ray and the surface distance.

Overlapping segmentation, front face checking and match-
ing: the overlapping region is determined by projecting the
pre-built mesh vertices’s into the sensor 2D plane, once
transformed for the referential of the newly scanned ver-
tices and by checked the intersection area. We could sim-
ply re-triangulate all the points on the overlapping region,
but due misalignment errors it can result on a bumpy sur-
face. To tackle this challenge we propose an approach,
where the triangulations update only happens if it con-
tributes to improve the global model. The process consist
in detecting overlapping triangles on the previous scanned
range data image and the newly scanned range, and then
keep those that provide more information for the model.
We associate to each triangle a confidence value based on
the measure uncertainty of its 3D vertices. The distance
from where sensor acquires the data and the angle from it
stands in front a surface are inversely proportional to the
confidence (eq. 9):

Algorithm 3 Registration algorithm with outliers removal
1: Input :Xp,Xq
{assumed correspondent 3D point pairs}

2: Output :[R, t]
{rigid body transformation estimation}

3: while (i < MAXIT ER) do
4: randomly select 3 pairs of points
5: [Ri, ti]← estimate 6DOF rigid body transformation

for these 3 pairs
6: X ′q = Ri ∗Xq + ti

{apply the transformation to Xq scan to map it into
Xp reference frame}

7: inliersi = |(X ′q−Xp)< τ|,number o f inliersi
{determine the set of data points which are within a
Euclidean distance threshold τ}

8: if (sizeo f (inliersi)> Tthreshold) then
9: [R, t]← re-estimate the transformation model us-

ing all inliersi
10: EXIT
11: end if
12: if (number o f inliersi > bestscore) then
13: bestscore← number o f nliersi
14: best inliers← inliersi

{store cardinality of inliersi and inliersi}
15: update MAXIT ER
16: end if
17: i = i+1
18: end while
19: [R, t]← re-estimate the transformation model using all

points from best inliers
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Ci = |
1

Lθ
| (9)

where L is the distance between a 3D point and the range
sensor’s optical center and θ represents the sensor’s pose
angle in relation to the surface.

The angle θ is given by equation (10)

θ = arcos(−→ni ,
−→ri ) (10)

where −→ni is the normal of a triangle and −→ri is the normal-
ized measurement ray from the sensor’s optical center to
the point.

The confidence measures capture the fact that points close
to the sensor, as surfaces close to a fronto-parallel orienta-
tion, are typically captured more accurately by range sen-
sors. The normal vector of a point consists of averaging
normal vector of triangles formed with pairs of neighbors,
and for each new scanned 3D mesh, a list of triangles (3D
faces) is be tagged with confidence information related
with its 3D point positions. Integration of new triangles
will occur, only if, its confidence contributes to improve
the 3D model.

Figure 4 depicts the principle of a range sensor, composed
by 3 ray measure beams, scanning an object from different
positions (2D example). In this case, the range sensor ac-
quires data from 4 different point of views, S0,S1,S2,S3.
For example, due overlapping data measures, between
S0,S1,S3 we can incrementally update the global model
with the more confident edges (ex: P30,P31,P32).

S0 S1 S2

S3

P00 P01

P02

P10

P11 P12P20

P22P21

P30 P31

P32

Object

nij

nij

nij

Si - range sensor
       at position i
 

Figure 4. Range sensor, composed by 3 ray measure
beams, scans an object from different positions (2D exam-
ple)

Filtering Methods: depth maps containing holes, inconsis-
tent data in the depth image object boundaries and vibrat-
ing behavior at the depth pixel level should be addressed to
improve 3D reconstructions. Temporal filtering methods
based on time data averaging clearly improves the depth
maps quality, although are impractical on real-time appli-
cations or where moving objects exist. Several noise re-
moval methods are possible to enhance the Kinect depth
maps quality [Tomasi 98][Paris 06], like median filter, bi-
lateral filter, joint bilateral filter, non-local means filter or
moving square fitting. For example, the bilateral filter is a
non-linear filter based on Gaussian distribution, which re-
duces the noise smoothing the signal while preserving the
edges, however it has a high computational cost.

3 RESULTS

The integration and mesh refining algorithm were previ-
ously tested in matlab with noise free point data set and
provided useful hints to understand the system. Figure
5 depicts a 3D mesh model of an object (light blue) for
which the face triangles normals were computed (red ar-
rows). These triangles and vertices’s are projected into the
RGB-D sensor plane, here represented by the light green
square. The coordinate referential is composed by the blue
axes and its intersection is the projection center (referential
origin). The face triangles projections are represented in
yellow. In Figure 6, the object is rotated slightly around its
axes, here represented by light green color. Knowing the
rigid transformation, the visible vertices are transformed
to match with the previous model and reprojected into the
sensor plane, Figure 7. The re-projection of the mesh into
image sensor plane enables to detect the triangle intersec-
tion and preserve triangles with higher confidence.

Figure 5. Fixed range sensor scanning an object

In Figure 9 we show an example of correspondence be-
tween consecutive image features using SURF method
(white lines indicate correspondent point).

Figure 10 depicts a sequence of scans that creates a 3D per-
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Figure 10. Sequence of mesh models to be integrated, triangulation based on depth data sensor grid structure and depth infor-
mation.

Figure 6. Moving object

Figure 7. Mesh re-projection into image sensor plane to
detect triangle intersection. Preserve triangles with higher
confidence.

(a) (b) (c)

Figure 8. (a) RGB image. (b) IR monochromatic image
with speckles pattern projected onto a scene. (c) Depth
map with distances associated to colors.

22o Encontro Português de Computação Gráfica e Interação

52 12-13 November 2015 DEEC - U.C.



Figure 9. SURF features matched on consecutive time
frames

son model. On the top row we present RGB images of the
scene and in lower row snapshots of the respective meshes,
generated in real time. The mesh triangulation is based
on depth data sensor grid structure and depth information.
To achieve the real time characteristic, we programmed in
OpenGL for Embedded Systems (OpenGL ES) as it en-
ables vertex buffers to be processed in parallel as a single
entity. GPU shaders and OpenCV [OpenCV 15] were also
used.

Figure 11 shows a reconstructed 3D model. It results from
several 3D point clouds fused in real time after applying
successive 3D rigid body transformations, mesh refining
integration and rendering.

Figure 11. Synthesized views of a on-line 3D recon-
structed model dependent of observer point of view.

3.1 Discussion

Processing real data allowed us to identify some noise
sources that can affect the algorithm. For example, SURF

points can generate erroneous matches due image noise
and they are more common on body boundaries (Figure
9 presents some wrong diagonal links for an almost pure
vertical axis body rotation). The body to be reconstructed
should be segmented from background static areas using
a motion filter. Scale-invariant feature transform (SIFT)
[Lowe 04] was also tested and presented better accuracy
as key feature descriptor, although we have chosen SURF
method in order to achieve the real-time characteristic. The
kinect system imaging geometry introduces structural er-
rors that are function of the distance to the object and the
sensor orientations relative to the object surface. A proper
calibration of the RGB-D sensor is essential to improve re-
sults. Stereo calibration procedures were used to estimate
the intrinsic parameters of both RGB and IR (depth) cam-
eras, as the relative transformation (R,T ) between them.
The estimated camera’s parameters and transformations
enabled us to align Kinect

TM
both RGB with IR (depth)

cameras and obtain more reliable data information (as de-
picted in Figure 8). The proposed reconstructed 3D model
approach enables to generate any virtual synthesized view
for an observer that moves in front of a display, that is, a
required augmented reality (AR) functionality.

4 CONCLUSION

A free viewpoint system framework is proposed to gen-
erate view dependent synthesis based on scene 3D mesh
model. Our approach explores virtual view synthesis
through motion body estimation and hybrid sensors com-
posed by video cameras and a low cost depth camera based
on structured-light. The solution addresses the geome-
try reconstruction challenge from traditional video cam-
eras array, that is, the lack of accuracy in low-texture or
repeated pattern region. We present a full 3D body recon-
struction system that combines visual features and shape-
based alignment. Modeling is based on meshes computed
from dense depth maps in order lower the data to be pro-
cessed and create a 3D mesh representation that is indepen-
dent of view-point. Research contributions include a new
incremental version of Crust algorithm that efficiently adds
new vertices to an already existing surface without having
to recompute previous generated meshes and a topological
incremental reconstruction approach based on confidence
measures that avoids redundant data information computa-
tion.

With this on-line reconstructed 3D model, we can provide
synchronous point of view for an observer that moves in
front of a display of a face-to-face meeting application,
thus enhancing the presence sensation. Future work in-
cludes framework usability tests for a telepresence meet-
ing application. This work presents an on-line incremental
3D reconstruction framework that can be used on low cost
telepresence applications, augmented reality (AR) or hu-
man robot interaction applications.
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