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Abstract
Studies of genome sequenced data are increasingly common in many domains. Technological advances enable detection of
hundreds of thousands of biological entities in samples, resulting in extremely high dimensional data. To enable exploration
and understanding of such data, efficient visual analysis approaches are needed that take domain and data specific requirements
into account. Based on a survey with bioscience experts, this paper suggests a categorisation and a set of quality metrics to
identify patterns of interest, which can be used as guidance in visual analysis, as demonstrated in the paper.

CCS Concepts
• Human-centered computing → Visual analytics; • Applied computing → Bioinformatics;

1. Introduction

Innovation in bioscience is increasingly data-driven. Advances in
genome sequencing techniques have made it possible to rapidly de-
tect large numbers of biological entities in samples from various
environments, making the study of such data increasingly common
in many domains. These datasets can be extemely high dimensional
with each sequence-read (or biological entity) corresponding to a
data dimension. The high dimensionality is a major analysis chal-
lenge, and efficient methods for exploratory analysis and visual-
ization are crucial for gaining insights from genomics data. Com-
mon visualization methods are able to efficiently handle moderately
sized datasets, but with dimensionalities increasing to hundreds of
thousands, alternative approaches are necessary. One approach is
to use quality metrics (QM), or measures of interestingness, as an
aid to guide users to data subsets of interest [BBK∗18]. What is
interesting in a dataset is, however, highly task and domain depen-
dent. We argue that the definition of appropriate QM has to be done
within a domain specific context. This paper presents the result of
a survey with domain experts that identify patterns of relevance for
studies of genomics data. Based on the survey, a set of QM are sug-
gested, which aim to measure these patterns in context of biological
entities. The QMs can be used to guide visual and interactive anal-
ysis, for instance by highlighting particularly interesting data, for
extraction of data subsets for further investigation, or for ordering
in visual representations to aid pattern identification. The utility of
the QMs are demonstrated through a set of examples where data
from a study of the gut microbiome of preterm infants [SEC∗17]
are visualized.

2. Background

This section describes some of the main features of genomics data,
and cover relevant previous research in high dimensional data and
QM in visualization. While this paper is focussed on genomics
data, the suggested approaches would generally be equally appli-
cable to other types of ’omics data.

2.1. Genomics Data

Data from genome sequencing studies can generally be defined as
multivariate, with genome sequences or biological entities (such as
bacterial species) as dimensions, and samples as data items. The
data values are the counts of individual biological entities in sam-
ples, providing an abundance profile for each sample. The data is
very high dimensional and may include thousands or even millions
of unique biological entities. Meanwhile, the number of samples is
often relatively small, leading to extremely sparse data spaces. The
samples are often categorised into different groups, such as test–
control, healthy–unhealthy, female–male and so on, with varying
number of categories. Throughout this paper, genomics data dimen-
sions are referred to as biological entities, data items are referred
to as samples, and categories of samples are referred to as sample
groups. Abundance refers to the count of a biological entity, relative
abundance refers to the relative count of a biological entity within
a sample, and prevalence refers to if a biological entity is detected
or not in a sample. The abundance distribution is often strongly
skewed in genomics data, with high abundance of an entity in a
small number of samples and low abundance or no prevalence in
a larger number of samples. Furthermore, commonly only a small
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part of biological entities are highly abundant and prevalent. The
visualization examples in this paper utilise data from a study of
the gut microbiome of preterm infants [SEC∗17], consisting of 516
biological entities across 867 samples. The samples are classified
by Birth Mode, with Cesarean Birth and Vaginal Birth as sample
groups. The biological entities are, in this case, Operational Tax-
onomic Units (OTUs), which are a close approximation to bacte-
rial species, extracted through clustering of DNA sequences. OTUs
have an associated hierarchical taxonomy through the biological
classification system, and are typically converted into a genus for
analysis as an OTU name generally has no biological meaning.

2.2. High Dimensional Data in Visualization

High dimensionality in visualization can be defined as when it be-
comes challenging to visually extract meaningful relations among
dimensions [BTK11]. Common visualization methods for multi-
variate data, such as Parallel Coordinates (PC) [Ins85] and Scatter
Plot Matrix (SPloM) [BC87], are useful for datasets with mod-
erately high dimensionality, but their usability quickly decrease
with increasing dimensionality. Extensive overview of recent vi-
sualization systems and methods for analysis of high dimensional
data are available in Bertini et al. [BTK11], Johansson Fernstad et
al. [JSJ13] and Liu et al. [LMW∗17]. A common approach to analy-
sis of high dimensional data is to apply dimension reduction, which
may involve the projection of data to a new set of dimensions, in-
cluding methods such as self-organizing maps [Koh98], multidi-
mensional scaling and principal components analysis [Cox05]; or
the selection of a subset of particularly interesting dimensions to
retain for analysis. Projection methods may often be computation-
ally efficient, but are disadvantaged by unintuitive relationships be-
tween the original and new set of dimensions. For analysis of ge-
nomics data, selection of interesting subsets of biological entities
may be more straightforward than projection, since individual enti-
ties often are of interest.

The utilization of QM has been popular for tasks such as
projection, ordering, abstraction and view optimization [BTK11,
BBK∗18]. Bertini et al. [BTK11] define QM as calculated met-
rics that capture data properties which are useful for the extraction
of meaningful information about data. In context of high dimen-
sional data visualization, a QM can be thought of as a measure
of how interesting a dimension, a subset of dimensions or a di-
mension ordering is, or how well it represents the underlying data.
As such it can help the data analyst to concentrate on the most
interesting part of the data. The definition of what is interesting
is domain and task dependent, and in many cases multiple mea-
sures may be relevant [JJ09]. This paper suggests a set of QM
of particular relevance for the visual analysis of genomics data,
based on interviews and surveys with domain experts. QM have
been used previously to deal with high dimensionality in visual-
ization. Johansson Fernstad et al. [JJA∗11, JSJ13] represented di-
mensions in context of multiple QM, using a PC that is also used
for interactive subset selection. Their approach were in spirit re-
lated to methods presented by Turkay et al. [TFH11, TPH12] and
Krause et al. [KDFB16], who both link representations of dimen-
sion space and item space. Wang et al. [WLS19] provided subspace
comparison through dimension aggregation and incremental anal-

ysis. Lehmann et al. [LHT15] identified a set of metrics that work
similar to human perception, but concluded that further studies are
needed to understand how perceptivity depends on the underly-
ing data. Earlier studies [LAdS12, STMT12] have also shown that
the success of a quality metric largely depends on the underlying
dataset. Behrisch et al. [BBK∗18] provide an extensive review and
categorisation of the use of QM in visualization, separating the QM
calculation into Image Space, Data Space, and Hybrid. The QM
suggested in this paper are Data Space metrics, and can as such be
considered visualization agnostic. They are based on tasks and pat-
terns of relevance for studies of genomics data, taking into account
typical features of this data.

3. Quality Metrics for Genomics Data

To address the high dimensionality challenge of genomics data, the
QM presented here are focussed on identification of interesting bio-
logical entities or groups of entities. From visualization viewpoint,
such QM can be used to highlight data of potential interest for fur-
ther investigation, for selection of interesting subsets of biological
entities to be analysed visually, and for ordering of entities in vi-
sualization to increase perceivability of interesting data patterns.
Previous research into QM for studies of genomics data [JJA∗11]
define the abundance and prevalence of biological entities as QM
of interest, as well as a confidence value for the taxonomic clas-
sification of entities. These QM were chosen based on informal
interviews with bio-scientists. To provide a broader foundation, we
asked 20 scientists with expertise in bioinformatics (5), microbi-
ology (10) and other biology (5), within a range of application
domains (medicine and health, pharma, agriculture, environment,
and personal and home care), to answer an online questionnaire re-
garding which data patterns they find most interesting for studies
of microbial ecology. To define a set of patterns to be used in the
study, an initial set were selected based on our previous work and
iterated with two of our microbiologist collaborators, resulting in
the patterns listed in figure 1. The participants were asked to rank
the patterns using a five point likert scale (1 = not interesting, 5 =
very interesting), and were provided a free text option to add other
patterns of interest. Figure 1 displays the result of the questionnaire
in terms of percentage of participants that answered 4 (interesting,
green colour) and 5 (very interesting, blue colour). Additional pat-
terns suggested were: temporal relationships, predictive power, and
phylogenetic structure in communities.

The patterns deemed most interesting (with a rank of 4 or 5 by
more than 60% of participants) can be separated into five cate-
gories: 1) Individual entity values: the abundance and prevalence
of biological entities (first and second bar); 2) Sample group dif-
ferences: the difference in abundance and prevalence between sam-
ple groups (third and fourth bar); 3) Multivariate entity relation-
ships: the correlation and the similarity between biological entities
(fifth and sixth bar); 4) Taxonomy: certainty of taxonomic classi-
fication (seventh bar); and 5) Sample–entity relationship: the re-
lationship between biological entities and individual or groups of
samples (two rightmost bars).

This paper presents a set of QM based on the first three of these
categories. The QM are by no means intended as an exhaustive
list of all possible metrics for these patterns. The certainty of taxo-
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Figure 1: Percentage of participants ranking patterns as interesting (4) and very interesting (5) for studies of microbial ecology.

nomic classification, category 4, is not included as it is a measure
extracted as part of the initial assignment of taxonomy. Further-
more, category 5, the relationship between biological entities and
individual samples or groups of samples, is considered too complex
to be successfully described as a single quantitative value, and are
more meaningfully explored in an interactive visualization system.
The suggested QM are designed mainly for dimension ranking, al-
though they could be adapted to fit other purposes. Their utility
is demonstrated through subset selection and ordering in PC and
Scatter Plots, with sample polylines and points coloured by the
two Birth Mode groups (Vaginal Birth represented by blue and Ce-
sarean Birth by red). Additional examples are provided as supple-
mental material. The following notation is used: a genomics dataset
X , includes M biological entities and N samples. ~x j and ~xk are bi-
ological entities where j,k = 1, ...,M and xi, j is the abundance or
relative abundance of biological entity j in sample i.

Category 1 – Individual Entity Values: The abundance of a bi-
ological entity corresponds to the total count of that entity, that is
detected in all samples. Logarithmic scaling is often applied, due
to the skewness of the abundance distribution. An abundance QM
for entity ~x j can, hence, be calculated as Qab(~x j) = log(∑N

i=1 xi, j).
Prevalence, on the other hand, is the relative number of samples
an entity has been detected in. The QM for prevalence for entity
~x j can then be defined as Qpr(~x j) = ∑

N
i=1 (1 : xi, j > 0). Thus, high

abundance or prevalence values are assigned to entities with high
total abundance or prevalence. Figure 2 shows examples of using
the metrics to select the ten most abundant and ten most prevalent
entities for further examination using PC. Comparing the two PC it
becomes apparent that the most abundant entities are not exactly the
same as the most prevalent, for instance the three rightmost entities
in figure 2a are detected at higher counts than the three rightmost
in figure 2b, although the latter are detected in more samples.

Category 2 – Sample Group Differences: The difference be-
tween groups of samples is often of interest for analysis. Pre-
vious research [JJA∗11] suggested QM based on the difference
in average abundance and prevalence between all sample groups.
Prevalence is a binary value, either an entity is prevalent in
a sample, or not, and the prevalence value of a sample group
can straightforwardly be described as a percentage (i.e. entity
A is prevalent in 40% of samples in group X). The prevalence
difference QM of entity ~x j can then be defined as the aver-
age difference in prevalence between sample groups, QDpr (~x j) =

(∑
G−1
a=1 ∑

G
b=a+1 |Qpr(~x j,a)−Qpr(~x j,b)|)/(G− 1), where G is the

number of groups and Qpr(~x j,a) is the prevalence in group a, such

(a) Highest abundance entities ordered with highest Qab value to the left.

(b) Highest prevalence entities ordered with highest Qpr value to the left.

Figure 2: The 10 biological entities with highest Qab and Qpr val-
ues, applying logarithmic scaling to the axes.

that QDpr (~x j) is high when the prevalence difference between sam-
ple groups is high. In figure 3, QDpr (~x j) is used to select the biolog-
ical entities with highest prevalence difference. It is visible that the
first and fourth entity from left, HUJBact2 and GFKSpe61 (both
Actinomyces), are only prevalent in blue samples, while the sec-
ond from right, LcbSal24 (a Lactobacillus), is only prevalent in red
samples. For abundance, which is a numerical measure, an issue
with the approach by Johansson Fernstad et al. [JJA∗11] is that
sample groups may have a big difference in average abundance
while still largely overlap. This is comparable to clustering where
the centroids are relatively distant from each other, but the clus-
ters are still not well separated. To address this, this paper suggest
the use of cluster separation metrics to evaluate if groups of sam-
ples are well separated within a biological entity. In the examples
provided here, the Davies-Bouldin index [DB79] is used, but other
cluster separation measures, such as silhouette analysis [Rou87],
could be used as well. The Davies-Bouldin index is based on a ratio
between the within cluster scatter (Sa) and the separation between
pairs of clusters (Ca,b). The goodness of clustering for a cluster
pair is defined as Ra,b = (Sa + Sb)/Ca,b. The Davies-Bouldin in-
dex, which provides a goodness measure for the whole clustering,
is then defined as DB = (∑G

a=1(Da))/G, where G is the number of
clusters (sample groups) and Da = maxb 6=a(Ra,b) is the maximum
cluster pair goodness value for cluster a. A low DB corresponds to
a high cluster separation, thus the QM for entity ~x j is defined as
QDab(~x j) = maxDB−DB(~x j), where maxDB is the highest Davies-
Bouldin index calculated for the individual biological entities. This
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Figure 3: Entities with highest prevalence difference, applying log-
arithmic scaling and ordered with highest QDpr value to the left.

(a) Sample group difference identified using the Davies-Bouldin index.

(b) Sample group difference identified based on average abundance.

Figure 4: Biological entities with highest abundance difference be-
tween sample groups, using different metrics. Logarithmic scaling
is applied and axes ordered with highest QM value to the left.

then results in a high QDab for entities where the sample groups
are well separated. Figure 4 displays the ten highest ranked entities
based on cluster separation and average abundance difference. It is
clearly visible that sample groups are more separated in figure 4a
than in figure 4b, confirming that cluster separation may be a better
QM than difference of averages. Identification of biological enti-
ties where sample groups are different can here help to understand
differences in the microbiome that may be driven by Birth Mode.

Category 3 – Multivariate Entity Relationships: Similarity and
correlation measures provide descriptions of relationships between
pairs of biological entities. They can indicate coexistences and sup-
port identification of entities with potential symbiotic or antibi-
otic interaction. A range of similarity and correlation measures
have been suggested for genomics analysis [KLL∗10], including
Pearson correlation, Chi-squared, Gower and Canberra distances,
and Bray-Curtis dissimilarity [BC57]. Another group of similar-
ity measures are the UniFrac distance [LLK∗11] which takes the
phylogenetic similarity of entities into account. Pearson correla-
tion is used in the examples in this paper, but in principle, any
pairwise correlation or similarity metric could be used, including
output from analysis tools such as QIIME2 [BRD∗19], mothur
[SWR∗09] or Bioconductor [LHP∗13]. As a basis, QSim(~x j,~xk)
is defined as the correlation or similarity (C) of a pair of biolog-
ical entities ~x j and ~xk. It can then be used for ordering of vari-
ables, extraction of pairs with high or low similarity, or summarised
to extract individual entities with high similarity to other entities.
Since both positive and negative correlation can be of interest, a
high QM is assigned irrespective of the sign of the correlation,
hence, QSim(~x j,~xk) = |CCor(~x j,~xk)|. Where a dissimilarity measure

Figure 5: The five entity pairs with highest QSim.

is used, such as Bray-Curtis [BC57], the metric is calculated as
QSim(~x j,~xk) = (1−CDis(~x j,~xk)). The abundance distribution in en-
tities is often highly skewed, with a large number of entities with
very low prevalence. These entities are mathematically similar, but
they are not interesting for identifying coexistence and similar pat-
terns. Thus, we suggest combining the metric with a prevalence
threshold tp, setting QSim(~x j,~xk) = 0 for ~x j,~xk ≤ tp. Figure 5 dis-
play scatter plots of the five pairs of biological entities that were
highest ranked by QSim(~x j,~xk) based on Pearson correlation. While
it is clear from the figure that correlation patterns are relatively
noisy in this dataset, with a large number of samples near the axes
meaning they are detected at low levels or not detected at all for that
biological entity, some potentially interesting patterns are still vis-
ible. For instance, the first and third plot show that samples with
higher abundance of the entities represented by the y-axes, also
tend to have higher abundance of the entities represented by the
x-axes, indicating a potential pattern of symbiosis or co-existence
of those entities. The second and fourth plot, on the other hand, dis-
play what in part could be described as a negative correlation, were
no samples have high abundance of both biological entities con-
currently, which could indicate a possible antibiotic pattern. The
pairwise metric can be useful for identifying these kind of patterns,
as well as for ordering of entities in multivariate visualization, us-
ing approaches such as the correlation based ordering described in
Johansson and Johansson [JJ09]. In situations where a single value
per entity is beneficial, such as when ranking entities for subset se-
lection, a summarised QM can be useful, which can be calculated as
QSimsum(~x j) = ∑

M
k=1,k 6= j(QSim(~x j,~xk)). The supplemental material

includes further examples of visualization where the above QMs
are utilised.

4. Conclusions and Future Work

Visual analysis of high dimensional data is particularly challenging
in studies of genomics data, where rapid technological advances
generate thousands of dimensions. Quality metrics are commonly
used in high dimensional data analysis to guide extraction of sub-
sets of particularly interesting data or for dimension ordering. The
relevance of a quality metric is however often task and domain de-
pendent. We identified patterns of interest for the analysis of ge-
nomics data, through a survey with bioscience experts. A set of
quality metrics were suggested to support identification of these
patterns. The utility of the metrics was demonstrated through di-
mension selection and ordering of data from a gut microbiome
study, visualized using parallel coordinates and scatter plots. In the
future, the metrics will be incorporated in visual analytics systems
to provide semi-automated guidance. Their usability will be evalu-
ated through quantitative usability studies as well as through qual-
itative user testing with domain experts.
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