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Abstract
While it is usually not difficult to compute principal curvatures of a smooth surface of sufficient differentiability, it is a rather
difficult task when only a polygonal approximation of the surface is available, because of the inherent ambiguity of such rep-
resentation. A number of different approaches has been proposed in the past that tackle this problem using various techniques.
Most papers tend to focus on a particular method, while an comprehensive comparison of the different approaches is usually
missing.
We present results of a large experiment, involving both common and recently proposed curvature estimation techniques, applied
to triangle meshes of varying properties. It turns out that none of the approaches provides reliable results under all circum-
stances. Motivated by this observation, we investigate mesh statistics, which can be computed from vertex positions and mesh
connectivity information only, and which can help in deciding which estimator will work best for a particular case. Finally,
we propose a meta-estimator, which makes a choice between existing algorithms based on the value of the mesh statistics, and
we demonstrate that such meta-estimator, despite its simplicity, provides considerably more robust results than any existing
approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems; curve, surface, solid, and object representations.

1. Introduction

In this paper, we deal with the problem of estimating principal cur-
vatures at vertices of a general triangle mesh. Curvature is a differ-
ential property of embedded manifolds. For planar curves, the cur-
vature is a scalar value at every point. There are many equivalent
definitions, such as the signed rate of change of unit tangent, the
signed rate of change of unit normal, or the signed inverse radius of
osculating circle. At any point of a smooth surface, one can obtain
a planar curve by intersecting the surface with a plane containing
the point and the surface normal, and the curvature of such curve
is known as normal curvature. By varying the plane, one obtains
two distinct orthogonal orientations where the normal curvature is
minimal or maximal, respectively. Curvature of the corresponding
intersection curves is known as the first and the second principal
curvature κ1 and κ2, respectively.

Computing the curvature allows better understanding of the
shape. Local properties, such as convexity/concavity, unfoldabil-
ity and others can be derived from the principal curvatures. Many
shape processing algorithms build on the notion of surface curva-
tures. Typically, shape matching, surface registration, shape classi-
fication, surface parameterization and many others build heavily on
the availability of surface curvatures.

While unambiguously defined and usually easy to compute in

the smooth case, curvature is much more difficult to evaluate when
only a polygonal approximation of the surface is available. Directly
applied, curvature is zero for inner areas of mesh faces and unde-
fined at vertices and edges. One must therefore interpret the prob-
lem differently. In the usual interpretation, the task is to estimate
the curvature of the surface that is approximated by the polygo-
nal mesh. This is, however, a difficult task, since generally it is
not possible to infer the exact description of such surface based on
the knowledge of the vertex positions only, because many different
smooth surfaces may correspond to a single discrete representation
in general.

Because of the potential usefulness of the curvature and the in-
herent difficulty of its estimation from a polygonal representation,
many approaches emerged in the past decades, using different con-
cepts and approaches to tackle the problem. Typically, algorithms
attempt to locally fit some smooth surface of known curvature to
the polygonal mesh, or relate some local curvature integrals of the
polygonal surface to the curvature of the approximated smooth sur-
face. We review the possible approaches in the Related work sec-
tion.

Unsurprisingly, the different approaches give different results,
depending both on the algorithm, as well as on the nature of the
input data. Based on the algorithm design, some curvature estima-
tors work particularly well for some classes of surfaces, such as
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spherical surfaces, regularly sampled surfaces or surfaces equipped
with exact normals. Additionally, some algorithms use information
from a wider local neighborhood in order to make the estimation
more robust to noise, while sacrificing some of the precision by
smoothing the result - an effect that is not always appropriately dis-
cussed. Despite the optimistic results usually presented in research
papers, currently there is no single curvature estimation algorithm
that works best (or even very well) in all scenarios.

For many real-life scenarios, the current gamut of curvature esti-
mators is sufficient and an appropriate algorithm may be chosen for
most practical situations. On the other hand, in general mesh pro-
cessing tools, such as Meshlab (http://meshlab.sourceforge.
net), OpenFlipper (http://www.openflipper.org) or Graphite
(http://alice.loria.fr/software/graphite), there is usu-
ally no information available on the origin or purpose of the par-
ticular polygonal mesh at hand that would allow choosing an ap-
propriate curvature estimator. This leads to serious problems, when
the estimated curvature is of little use, either by being too noisy, too
smoothed or simply too imprecise for the particular purpose.

In this paper, we present results of a large experiment, where
a variety of curvature estimators were used on triangle meshes of
different properties, such as density, regularity or amount of present
noise. Having no winning estimation strategy, we investigate a set
of mesh statistics which could help with choosing an appropriate
estimator for a dataset of unknown origin. This leads to a concept of
a meta-estimator, which first analyzes the data and chooses a proper
estimation strategy based on this analysis. We build one such meta-
estimator, and show that on average it easily outperforms any of the
existing estimators.

The rest of the paper is organized as follows: in the following
section we review related work, focusing on the most prominent
curvature estimation techniques. In Section 3 we describe the struc-
ture (data sources, distortion sources, curvature estimators) of our
accuracy experiment. In Section 4 we discuss the results of the ex-
periment. Section 5 introduces different mesh statistics, which will
be used in Section 6 to design a curvature meta-estimator. Finally,
in Section 7 we discuss some implementation details and Section 8
concludes the paper.

2. Related Work

Our work is closely related to a variety of curvature estimation al-
gorithms proposed in the literature. It is generally possible to dis-
tinguish two main approaches: first attempts to somehow estimate
the smooth surface that is approximated by the mesh, typically us-
ing some sort of regression, and then evaluates the curvature of
the fitted surface at some point. The other class of approaches di-
rectly evaluates the curvature, or curvature related quantities, of the
triangle mesh at hand. In order to obtain reasonable results, these
quantities are usually integrated over some domain. Pointwise esti-
mate of curvature is then established as a normalized integral over
some small area. Note that while the latter class of approaches ac-
tually estimates fundamentally different quantities, we will simply
investigate its performance for the same purpose as the first class.

One of the most popular approaches is approximating the lo-
cal surface and/or its normals using either circles or parabolas,

as discussed in [GI04]. Such approach produces an osculating jet
(see [CP03]), usually described by a 2×2 tensor, where the eigen-
values correspond to the curvature of the jet at origin. Note that all
the variants of this algorithm rely on the availability and accuracy
of vertex normals. For a majority of practical purposes, this might
lead to problems, when normals have to be estimated and thus be-
come inherently inaccurate [MT04].

A similar approach has been proposed by [ZGYL11] in the con-
text of GPU estimation of curvature. Each triangle of the mesh
is first replaced by a Bézier patch (a variant of the so-called PN
patch [VPBM01] has been used), for which the curvature is easy to
evaluate. Curvature of a vertex is then computed as a weighted sum
of curvatures at barycentres of incident triangles, using weights as
in vertex normal estimation by Max [Max99].

One drawback of PN triangles is that they are only C0 continuous
across edges. Constructing plain cubic Bézier patches with a higher
order of continuity is, however, not always possible. Motivated by
this problem, Fünfzig et al. [FMHF08] proposed the PNG1 patch,
which is constructed as a blend of three cubic Bézier patches for
each triangle, each providing continuity over one edge of the tri-
angle. Curvature properties of such patches have been investigated
in [BFRA12], and such approach can be used to obtain per vertex
curvature estimates in the same manner as in [ZGYL11].

Another very popular approach to curvature estimation
[MDSB02] is based on the cotan discretization of the Laplace-
Beltrami operator [Mac49,PP93,DMSB99]. Evaluating the discrete
Laplacian on a triangle mesh yields the mean curvature normal vec-
tor, from which the magnitude of the mean curvature can be com-
puted easily. Together with a consistent set of normal estimates and
an angle defect based [BCM03] estimate of the Gaussian curva-
ture [Xu06], one may reconstruct the principal curvatures.

An approach closely related to the fitting based algorithms has
been proposed by Rusinkiewicz [Rus04]. Here, an estimate of the
second fundamental form is built for each triangle. These estimates
are then rotated to the coordinate system of each vertex and used to
obtain a per-vertex estimate as a weighted sum of the per-triangle
forms. Principal curvatures are then extracted as eigenvalues of the
per-vertex tensors.

An approach based on computing the integrated shape operator
(with swapped eigenvalues) over a small area of the mesh has been
proposed by Cohen-Steiner and Morvan [CSM03]. Their approach
builds on the fact that such operator is non-zero only on edges, and
even there its integral can be computed from the dihedral angles.
Curvatures are obtained by eigenvalue decomposition of the esti-
mated operator.

Principal curvatures can be also recovered using another formu-
lation of the shape operator proposed by Grinspun et al. [GGRZ06].
Their approach uses mid-edge normals in order to obtain an dis-
cretization of the shape operator.

Another shape operator based method has been proposed by
Hildebrandt and Polthier [HP11]. In their approach, two general-
ized versions of the shape operator Ŝ and S̄ are proposed and their
local estimates are derived using a local function. Both generalized
operators can in turn be converted into the standard shape operator
S, from which the curvatures can be extracted.
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Figure 1: Used sampling of explicit functions. From left to right: rectangular, equilateral, randomized, random. The color mapping captures
mean curvature.

Pottmann et al. [PWY∗07] have derived relations between some
integral invariants and mean and Gaussian curvature. The invariants
are estimated using a sampled distance function together with a
tree-based data structure or Fast Fourier Transform [PWHY09].

Many of the approaches use a certain distance d, up to which the
surface influences the pointwise curvature estimation. Kalogerakis
et al. [KSNS07] have noted that the choice of d strongly influences
the estimation accuracy, especially in the presence of noise. There-
fore they propose an adaptive reweighting of the vertices in the
neighborhood in order to suppress the influence of outliers. This
approach is in its principle most closely related to our proposed
meta-algorithm. Our approach, however, takes the idea one step
further, adjusting not only the weights of the vertices, but also the
method itself.

A common trait of many previous works proposing new curva-
ture estimation algorithms is rather weak testing, focusing mainly
on stressing out the usefulness of a particular method rather than
providing a comprehensive performance analysis. Yet as one can
see, there are many different approaches to curvature estimation,
and one may expect that under varying circumstances, different al-
gorithms will perform very differently. In this work, rather than
discussing why a particular algorithm outperforms others, we fo-
cus on a more practical question of when a particular algorithm
works well. We will therefore not discuss whether or not it is ap-
propriate to use each algorithm in a particular scenario, instead we
simply assume that it can be used and evaluate the performance.

Even though similar studies have been done previously [MSR07,
KLN08, MFM10, VKB16], our experiment involves a much wider
gamut of possible data types, as well as approaches not known at
the time of the previous works.

3. Experiment Design

Our aim is to test the accuracy of a variety of curvature estimation
algorithms on a wide scale of different types of triangle meshes
generated from smooth surfaces, for which the exact curvature is
known. We hope to provide the readers with quantitative data that
will help them to choose an appropriate estimation algorithm for a
particular application. At the same time, we want to map the "land-

scape" of triangle mesh types in order to be able to comprehend the
appropriateness of a particular estimator based on the properties of
the input mesh only.

In order to achieve our goal, we have created a software frame-
work which allows performing extensive testing easily. The frame-
work is modular, providing the possibility to add data sources, data
distortion sources, curvature estimators and accuracy evaluation
routines easily. All available modules can be then combined to form
an experiment. Our benchmarking software is freely available and
because of its trivial extensibility, it is suitable for testing future
curvature estimation approaches. Also, any of the experiment de-
sign choices made by us can be easily adjusted in order to match
the needs of a particular application.

One can intuitively identify several properties of triangle meshes,
which will have an influence on the accuracy of curvature esti-
mation. In particular, the sampling density is a determining fac-
tor [HPW05]. Apart from it, sampling regularity also plays an im-
portant role. Many of the algorithms use vertex normals for the
curvature estimation, however, in most practical cases they are not
known and have to be estimated. The accuracy of the estimation
then in turn also influences the curvature estimation result. Finally,
presence of noise in the data is a key factor. In our experiment, we
have tried to generate datasets covering the full spectrum of possi-
bilities, yet each dataset (triangle mesh) is globally homogeneous
in the sense of the above listed properties.

We have used three types of data sources: explicit functions in
the form z = f (x,y), implicit functions in the form f (x,y,z) = 0
and NURBS surfaces. Each type of smooth surface has been con-
verted into an approximating triangle mesh using techniques spec-
ified below, and for each mesh vertex, exact principal curvatures at
the corresponding smooth surface point were computed and used
as reference for evaluating the curvature estimators.

3.1. Explicit Functions

Converting an explicit function to a triangle mesh is straightforward
when a sampling and a triangulation of the XY plane is given. In
our experiments, we have used four types of sampling:

• regular rectangular,
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• regular equilateral (vertices form equilateral triangles),
• equilateral with noise (vertices of equilateral distribution are

shifted in the XY plane by a random vector up to a user-specified
length), denoted randomized and

• random.

The first two types of sampling imply a regular triangulation
(rectangles with diagonals or equilateral triangles), while for the
later two the 2D Delaunay triangulation [Kv02] is used. Fig. 1
shows an example of the used types of sampling. Finally, the z coor-
dinate is computed for each vertex using the user specified function.
Our system then uses symbolic differentiation to compute the exact
principal curvatures at each mesh vertex.

In our experiment, we have used the function z = Ax2 +By2 +
Cxy + Dx + Ey with parameters A, B, C, D and E chosen ran-
domly in the interval 〈−1,1〉. We have sampled in the interval
x ∈ 〈−2,2〉,y ∈ 〈−2,2〉 using varying spacing to achieve three lev-
els of sampling density.

3.2. Implicit Functions

Another source of triangle meshes with known curvature is isosur-
face extraction from implicit surfaces. The character of the output
mesh then depends on the particular surface extraction method. The
basic Marching cubes [LC87] algorithm is notoriously known for
the poor quality of the resulting triangulation, and effort has been
invested into finding a better alternative. In our experiments we
have used both Marching cubes and Dual contouring [JLSW02],
which provides significantly different results (see Fig. 2).

Note that in the typical extraction task, the implicit function is
first sampled using a regular grid, and the vertices of the final mesh
are then computed from these samples. As a result, they do not nec-
essarily lie on the original smooth surface f (x,y,z) = 0. Therefore
we use two versions of the isosurface extraction algorithm:

• inexact, which works in the usual way. The desired curvature is
computed from the implicit function at the off-surface point, i.e.
it is in fact not the curvature of f (x,y,z) = 0, and

• exact, where the extraction algorithm has direct access to the un-
derlying implicit function, and is therefore able to place the ver-
tices exactly onto the isosurface. In the case of marching cubes,
this translates to first identifying the intersected edges using the
regular grid, and then finding the exact intersection point using
interval subdivision instead of interpolation.

Our benchmarking system allows using any implicit function of
sufficient differentiability. Computing the principal curvatures of
the isosurface of an implicit function is straightforward, especially
since there is a handy summary of the formulas available [Gol05].

In the experiment, we have used the zero isosurface of the func-
tion Asin(Bx)+C sin(Dy)+ sin(Ez) with the parameters A, B, C,
D and E chosen randomly in the interval 〈1,5〉. The isosurface has
been extracted in the interval x ∈ 〈−2,2〉,y ∈ 〈−2,2〉,z ∈ 〈−2,2〉
using various resolutions of the volume grid.

3.3. NURBS Surfaces

Non-uniform rational Bézier spline (NURBS) [Far91] surfaces are
ubiquitous in surface design applications. Since they are smooth

Figure 2: Isosurface extraction methods. Left: Marching cubes;
note the sliver triangles. Right: Dual contouring; note the vertices
of high degree.

parametric surfaces, converting them into triangle meshes is a sim-
ple matter of triangulating the parameter domain. In our experi-
ments, we have used all the methods listed above for triangulation
of the XY plane in the case of explicit functions.

In order to generate various surfaces, we use cubic basis func-
tions, random control points in a user-specified range and random
weights in the interval 〈0,1〉.

3.4. Mesh Distortion

It has been observed previously that the accuracy of curvature esti-
mation depends strongly on the accuracy of the input data. Some
approaches provide highly accurate results for noiseless inputs,
however, such algorithms usually provide unreliable results for
noisy data. Robustness to noise, on the other hand, usually leads
to smoothing, which compromises the accuracy when the noise is
actually low. For this reason, we test the estimators both in noise-
less scenario, as well as in scenarios when additional random noise
is added to the input. In the experiments, we use both uniform noise
(which may appear in practice for example due to coordinate quan-
tization during compression) and Gaussian noise (which typically
appears as artifact in imprecise scanning, where a multitude of fac-
tors influence the result). We have applied noise of varying stan-
dard deviation, however, in order to align the results from meshes
of different size/tessellation, we relate the standard deviation to the
average edge length.

In real data, apart from noisy vertex positions, also the vertex
normals are usually not exactly known to the curvature estimators,
except for rare cases: for example, data exported from a CAD appli-
cation might have exact normals attached (we do not discuss such
possibility here). Therefore we use estimated vertex normals for all
experiments involving estimators that require them. After a short
comparative study, we have decided to compute the normals us-
ing the algorithm by Max [Max99], since it provides quite stable
results in most situations. When working with noisy inputs, we es-
timate the vertex normals from the noisy vertex positions.

3.5. Tested Estimators

To the best of our knowledge, we have included a to-date widest va-
riety of curvature estimation approaches into our experiment. We
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are also using some approaches not originally intended for cur-
vature estimation. We have implemented the following estimators,
which work as parameterless:

• cotan discretization of Laplace operator as an estimator of mean
curvature combined with angle deficiency as estimate of Gaus-
sian curvature, as described in [MDSB02],

• weighted average of per-triangle estimation of shape operator, as
described in [Rus04],

• weighted average of PN-triangle curvatures, as described in
[ZGYL11],

• weighted average of PNG-1 patch curvatures, as described in
[FMHF08].

Apart from those, we have also implemented approaches that
work in a local neighborhood. These approaches accept a param-
eter which determines the radius of the neighborhood, and we have
tested various choices in the experiment. In general, we specify the
radius as a multiple of the average edge length l̄, which leads to rea-
sonable values in most cases. In this class of algorithms, we have
implemented the following:

• circle / parabola fit, as described by [GI04],
• parabola fit with adjacent normal, as described in [GI04],
• per-edge estimation of the shape operator (with swapped eigen-

values) as described by [CSM03], and
• generalized shape operators S̄ and Ŝ as described by [HP11].

Finally, we have used a publicly available reference implemen-
tations of the following algorithms:

• curvature estimation via integral invariants computed using FFT,
as described in [PWHY09, PWY∗07], and

• adaptive estimation of the second fundamental form, as de-
scribed in [KSNS07].

4. Experiment Evaluation

In order to quantify curvature estimation accuracy, we compute the
sum of curvature estimation errors ε = ‖κ1 − κ∗1‖+ ‖κ2 − κ∗2‖,
where κi is the curvature estimation and κ∗i is the exact curvature.
For each estimator, the values ε are averaged over all vertices of
each mesh M, only excluding vertices that lie near the border in
both topological and geometric sense, because some of the estima-
tors require special handling of border vertices. This way, we obtain
the error value ei(M j) of i-th estimator on j-th mesh. The errors
are averaged over 10 meshes of each type (combination of source,
sampling and triangulation) generated with random parameters. For
illustration of the types of input data, please see the supplementary
material.

Table 2 shows a summary of the results of our experiment for
noiseless data and for data with Gaussian noise of standard devia-
tion σ = 0.03l̄, Table 1 details the used estimators and their param-
eters. Note that for the noiseless and noisy experiments, the same
10 meshes were used, with and without noise. Therefore the values
in the corresponding cells are comparable. Vertex normals were es-
timated from the triangle mesh in both cases. Results for uniform
noise and Gaussian noise of different strength can be found in the
accompanying material, however, Table 2 captures the most promi-
nent trends in the results.

For noiseless data, following trends can be identified:

• local approaches, such as Meyer or Rusinkiewicz, provide the
best results, but only if the sampling is regular,

• fitting based schemes, such as the different variants discussed
by Goldfeather and Interrante, provide comparably good results,
even when the regularity is lower,

• the adaptive approach of Kalogerakis yields also quite good and
stable results,

• integrating schemes, such as Cohen-Steiner and Morvan, Hilde-
brandt or Pottmann, usually provide results of considerably
lower accuracy, since they tend to smooth the results.

Naturally the errors with noiseless data are much lower than with
noisy data, as can be expected.

For noisy data, on the other hand, the trends are quite different:

• local approaches fail to provide any reasonable estimation of the
original curvature,

• fitting approaches provide mediocre results provided that a wider
neighborhood is used, otherwise they fail as well,

• the adaptive approach by Kalogerakis also provides unstable,
rather mediocre results,

• best results are obtained by integrating schemes, in particular
the algorithm by Hildebrandt and Polthier is quite stable when
an appropriate width of the used local neighborhood is used.

Note that one may argue that the local approaches measure the cur-
vature of the local features on the noisy surface, and it is thus un-
fair to measure the error with respect to the curvature of the origi-
nal smooth surface. This is indeed true, for the case of noise-free
mesh, which is the case covered above. In many practical scenar-
ios, however, only a noisy measurement of the surface is available,
yet the user wants to estimate the curvature of the original smooth
one. To reiterate, we do not discuss whether a particular method
has been designed for a particular purpose, we merely measure how
well it works in a given scenario.

Our objective is to compare the accuracy of the different estima-
tors. One could measure the sum of estimation errors over all the
input meshes, however, such an approach leads to a bias towards
meshes where the estimation error is high in general (noisy data).
A better approach is to relate the inaccuracy of each predictor to
some realistically achievable result for each input meshMi. Using
the minimum estimation error emin over a group of estimators is a
good way to obtain a more expressive measure ê of inaccuracy of a
particular estimator

ê j(Mi) =
e j(Mi)− emin(Mi)

emin(Mi)
, (1)

where e j(Mi) is the estimation error of the j-th estimator onMi.
Finally, we would like to minimize the average

ē j =
1
N

N

∑
i=1

ê j(Mi), (2)

where N is the number of input meshes. In our experiments, we
have used

emin(Mi) = min
j

e j(Mi), (3)

i.e. the minimum over all tested estimators.
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As expected, there is no unique winner in the terms of curvature
estimation accuracy. One important observation is that those meth-
ods that work best in some cases work also very poorly on the rest
of the data, providing sometimes results that are worse by multiple
orders of magnitude. As a result, the average relative error of tested
estimators ranges from ē = 6.02 for the Kalogerakis approach up
to ē = 12710.9 for the Goldfeather and Interrante algorithm using
the smallest neighborhood and fitting parabolas.

5. Mesh Statistics

As demonstrated in the previous section, the gamut of triangle
meshes forms a rather diverse landscape, where different curvature
estimation approaches provide results of vastly different accuracy.
It is now our aim to investigate mesh statistics which would help
in deciding which curvature estimation approach to use. A mesh
statistic S(M) is a scalar number which can be determined from
the triangle mesh only (vertex positions and connectivity informa-
tion), i.e. without any knowledge about the original smooth surface.

Apart from being relevant to curvature estimation, such statistic
should also possess other properties. In particular, one would ex-
pect a statistic to be invariant to similarity transformations, because
the choice of proper curvature estimator should depend neither on
the unit used to measure the vertex positions, nor on the particu-
lar spatial position and orientation of the input triangle mesh. It is
also reasonable to have statistics that are independent of the total
number of vertices/triangles of the mesh, as long as the character
of the mesh is preserved. Therefore most statistics are computed
for some local neighborhood in the data (for each vertex, for each
triangle, for each edge etc.), yielding a vector t ∈ RN , where N is
the number of local neighborhoods (vertices, triangles, edges etc.).
The final statistic is then obtained using a pooling operator P , i.e.
S(M) = P(t). We have tested minimum, maximum, mean, me-
dian, standard deviation and variance as a pooling operator.

We have experimented with a number of statistics which intu-
itively may capture the key characteristics of a triangle mesh. Fol-
lowing statistics are computed in our system:

• edge lengths, normalized by average edge length
• inner angles of triangles
• unsigned dihedral angles (cos−1(ni ·nj), where ni and nj are unit

triangle normals of two adjacent triangles) for each inner edge
• signed dihedral angles for each inner edge
• solid angle adjacent to each vertex
• vertex degrees
• ratio of the circumcircle/inscribed circle radius

Additionally, we have used statistics based on a discretization
of the Laplace-Beltrami operator. We have used the uniform dis-
cretization, which when applied to coordinate function assigns a
vector di to each vertex, such that

du
i =

1
‖N(i)‖ ∑

j∈N(i)
(v j−vi), (4)

where N(i) is the set of vertices in the one-ring neighborhood of the
i-th vertex, and vi are the 3D coordinates of i-th vertex. The result-
ing vectors capture the offset (both tangential and normal) of each
vertex from the average of its neighbors. Additionally, we have

vi

vj

α β

Figure 3: Angles for the mean value Laplacian.

vi

d
d

d
m

d
u

i

i
i

Figure 4: Schematic of a relation between unit Laplacian vector
du

i , mean value Laplacian vector dm
i and Laplacian vector differ-

ence dd
i .

used the mean value discretization of the Laplace operator [Flo03],
computed as

dm
i = ∑

j∈N(i)

wi j(v j−vi)

∑ j wi j
, (5)

where

wi j =
tan(α/2)+ tan(β/2)

‖vi−v j‖
, (6)

and where α and β are the adjacent angles as depicted in Fig. 3 (for
more details, see [Flo03]). The resulting vectors capture the orthog-
onal offset of each vertex from the plane of its neighbors. Finally,
one can extract the tangential offset (i.e. a measure of sampling
regularity) of each vertex by subtracting the two Laplacian vectors,
obtaining the difference dd

i = du
i −dm

i . For illustration see Fig. 4.

For the Laplacian-based mesh statistics, we use the normalized
vector lengths ‖di‖/l̄ of each vector. The per-vertex vector lengths
are then pooled using one of the pooling operators listed above.

Apart from that, we have also used the standard cotan discretiza-
tion of the Laplace operator [DMSB99], which estimates for each
vertex the mean curvature normal vector. Having a matrix repre-
sentation of the operator L and a vector of all vertex positions v,
the Laplace vectors are dc = Lv. The smoothness of the surface can
then be estimated by evaluating the smoothness of dc. Therefore
we have applied the discrete Laplace operator to dc again in order
to determine its smoothness, obtaining s = L(Lv) = L2v. Note that
dc scales inversely with the mesh, and thus the resulting vectors s
scale with the inverse square of the mesh scaling factor. In order to
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obtain a scale independent statistic, we multiply the resulting vec-
tors by the squared average edge length:

s∗ = l̄2L2v. (7)

The vector s∗ consists of three component vectors associated to
each vertex of the mesh. The component vector lengths are then
pooled again using one of the pooling operators.

6. Curvature Meta-Estimator

We now want to construct a meta-estimator, which for each input
selects one of the available estimators based on the available statis-
tics. There are different possibilities of how the relation between
statistics and estimator accuracy can be used. We wish to have a
meta-estimator that is as simple as possible, consisting of only few
estimators and using only one or two mesh statistics. In such set-
ting, the task can be interpreted as a classification problem: we se-
lect a pair of estimators, and for each mesh, we measure which one
of the pair works better, yielding two classes of meshes. The task
of the meta-estimator is then to replicate the decision, using only
the statistic values.

For example, the estimator no. 7 (Goldfeather & Interrante, see
Tab.1) works well for noiseless meshes, while the estimator no. 23
(Hildebrandt & Polthier) achieves good accuracy with noisy data.
The ē of estimator no. 7 is 15.19 and ē of estimator 23 is 37.99, i.e.
neither of the estimators provides reliable results over the whole
dataset. We use the smoothness measure s∗ (Eq. (7)) to select one
of the two estimators for each mesh. Median is used as pooling op-
erator to obtain a single value for each mesh. A simple threshold-
ing has been used to make the decision, using a threshold t = 0.609
learned from a subset (random 35%) of the input meshes. The pro-
cedure yields a meta-estimator with ē = 1.18, i.e. reduced by more
than an order of magnitude with respect to the better of the con-
stituent estimators, and also considerably better than the result of
the best single estimator (ē = 6.02 of Kalogerakis).

Using exhaustive search, we have found no better combination
of two estimators, mesh statistic and pooling operator. Fig. 5 shows
the accuracy of other mesh statistics in the role of classifier be-
tween the two selected estimators. Naturally, better results could
be obtained by combining more estimators into the meta-estimator.

The simplest two-level meta-estimator works as follows: it
makes a decision based on a threshold of mesh statistic S1, either to
use estimator E1, or to do another decision, based on a potentially
different statistic S2, between two different estimators E2 and E3
(see the structure in Fig. 6). When constructing the meta-estimator,
we first establish the threshold of S2 by learning from a subset of
data. Subsequently, the resulting partial meta-estimator is used to
determine the threshold for the statistic S1.

We have again used exhaustive search of all combinations of two
mesh statistics and three estimators. The resulting meta-estimator
consists of the median of lengths of s∗ in the role of both S1 and
S2 (with different threshold), and of estimators no. 27 (Meyer) as
E1, 24 (Hildebrandt and Polthier) as E2 and 26 (Kalogerakis) as E3.
The resulting meta-estimator achieves ē = 0.86.

A three-component meta-estimator roughly represents the limit
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Figure 5: Accuracy of all tested statistics in selecting the proper
estimator (with lower error) out of estimators 23 and 7.
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Figure 6: Structure of the proposed meta-estimators: single level
decision(left) and two level decision (right).

of what can be reasonably tested using exhaustive searching. The
next step, i.e. doing a full 2-level decision tree, has 3 unknown
statistics and 4 unknown estimators, and testing all possibilities
would be only possible using massive computational power, or by
removing some less promising options beforehand. Creating a more
sophisticated classifier, where all the statistics will be used as inputs
for example for a neural network, is planned as a future work.

Even if there is some information about the input data available,
building a meta-estimator is still beneficial. In particular, when the
user knows that the data contain very little noise, or that it is even
completely noise-free, there are still considerable differences in the
accuracy among the estimators, depending on different properties
of the input.

We have used the same procedure as described above, only this
time using the noise-free meshes for the experiments (inexact im-
plicit functions were also excluded from the results). For the sim-
plest case of a single choice meta-estimator, the best results were
obtained using the Laplacian vector difference vectors dd for build-
ing the statistic. When mean value is used as a pooling operator,
yielding a statistic that decides between estimator 8 (Goldfeather
and Interrante, fitting circles, range 6l̄, ē = 5.83 for noiseless data)
and 27 (Meyer, ē = 14.59 for noiseless data), then a meta-estimator
with ē = 0.45 is obtained. The statistic captures the regularity of
sampling, and decides between an estimator that works well for
regular meshes (estimator 27) and an estimator that works well for
irregular ones (estimator 8).

Again, a two-choice meta estimator can be built as well. In our
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experiment, the best choice found by an exhaustive search is mak-
ing first a choice based on the dd , again using the mean for pool-
ing. Based on the first choice, either estimator no. 27 is chosen, or
another choice is made, based on the standard deviation of mean
value Laplacian vector lengths. This statistic captures the sampling
density (for densely sampled surfaces, the standard deviation will
be low), and it is used to make a choice between estimators 7 and
9 (different versions of Goldfeather and Interrante). The resulting
two-choice meta-estimator has ē = 0.31.

7. Implementation Notes

An implementation of our benchmarking software is available at
our website http://graphics.zcu.cz/curvature.html. It not
only allows replicating the results presented here, but also adjust-
ing the experiments to suit the needs of a particular application.
In our implementation, an experiment is described by an XML file
which specifies the used data sources, distortion procedures, esti-
mation algorithms and evaluation algorithms that should be used.
Each module is configurable, and it is therefore easy to design dif-
ferent experiments (using different functions in particular) by sim-
ply changing the XML file.

Additionally, thanks to the modular structure of the implementa-
tion, it is easy to extend the system by a new data source, distorter,
estimator or evaluation algorithm, only by implementing a simple
interface. More details can be found in the supplied Programmers
guide and Class reference.

We hope that by publishing the benchmarking software, we will
make it easier to build more comprehensive curvature estimation
experiments in the future. Naturally, we welcome any additions to
the software from the community.

8. Conclusion

We have shown results of a largest curvature estimation accuracy
experiment to date, involving recent estimators and a large variety
of input data types. The results demonstrate conclusively that no
single estimator is suitable for all possible input data.

Based on simple mesh statistics, however, it is possible to choose
an estimator suited for the properties of a particular input. We have
demonstrated that even a very simple meta-estimator, which only
chooses between two and three estimators respectively, improves
the average imprecision considerably. Our results show promise for
future possible improvements, if more complex classifiers, such as
neural networks, are used to choose the curvature estimator.

We use the difference dd of mean value Laplacian vector and
unit Laplacian vector as a measure of sampling irregularity, which
is independent of sampling density. It turns out that this measure
works well for our purposes, however, we believe that it could be
used for other applications in mesh processing as well.

In our work, we assume that the properties of the meshes are uni-
form for all vertices, which in practice may not always be the case.
However, it should be straightforward to extend the meta-estimator
so that it uses a local neighborhood to evaluate the mesh statistic
and to choose the appropriate estimator on a per-vertex rather than
per-mesh basis.

In the future, we would like to expand the experiment by us-
ing real world CAD NURBS models, additional sampling schemes
and more estimation approaches, such as [CP03]. Another inter-
esting possibility would be to perform a similar experiment and
meta-estimator construction for principal curvature directions.
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0.059
0.088

0.025
0.021

0.037
0.061

1.229
1.166

1.158
1.156

0.152
0.054

0.116
0.254

0.024
0.174

4.993
0.451

0.086
0.224

0.83
0.063

0.072
random

0.159
0.396

0.814
1.049

0.809
0.11

0.049
0.049

0.067
0.099

0.105
0.148

0.227
0.067

0.038
0.072

0.124
1.448

1.329
1.29

1.265
0.25

0.133
0.243

0.411
0.062

0.545
4.673

0.43
0.13

0.363
0.846

0.131
0.324

rectangular
0.054

0.041
0.074

0.116
0.027

0.001
0.003

0.006
0.011

0.004
0.015

0.032
0.056

0.004
0.008

0.016
0.027

1.559
1.488

1.464
1.438

0.114
0.04

0.085
0.192

0.004
8E-04

4.583
0.417

0.154
0.395

1.043
0.001

0.002
equilateral

0.046
0.033

0.059
0.095

0.026
7E-04

0.002
0.004

0.007
0.002

0.009
0.019

0.034
0.003

0.006
0.012

0.02
1.524

1.454
1.43

1.408
0.107

0.036
0.074

0.177
0.003

4E-04
4.951

0.452
0.141

0.362
1.08

1E-03
0.001

random
ized

0.045
0.035

0.062
0.098

0.219
0.046

0.017
0.012

0.012
0.044

0.026
0.028

0.039
0.025

0.013
0.014

0.021
1.531

1.448
1.421

1.399
0.211

0.044
0.078

0.18
0.016

0.205
4.965

0.455
0.139

0.358
1.065

0.066
0.089

random
0.127

0.329
0.73

1.003
0.671

0.111
0.04

0.03
0.034

0.086
0.066

0.081
0.119

0.07
0.025

0.027
0.048

1.673
1.552

1.503
1.467

0.334
0.101

0.155
0.27

0.047
0.611

4.642
0.434

0.203
0.471

1.037
0.131

0.334
rectangular

0.056
0.021

0.024
0.036

1.408
2E-04

6E-04
0.001

0.002
7E-04

0.003
0.006

0.011
0.002

0.002
0.003

0.006
1.766

1.692
1.67

1.655
0.121

0.033
0.048

0.105
0.001

1E-04
4.578

0.427
0.237

0.52
1.219

3E-04
1.402

equilateral
0.048

0.018
0.019

0.029
1.5

1E-04
4E-04

8E-04
0.002

4E-04
0.002

0.003
0.006

0.001
0.001

0.002
0.005

1.729
1.656

1.636
1.621

0.115
0.031

0.044
0.099

0.001
8E-05

4.907
0.452

0.221
0.483

1.246
2E-04

1.495
random

ized
0.045

0.019
0.021

0.03
1.472

0.049
0.015

0.008
0.006

0.043
0.017

0.012
0.012

0.027
0.011

0.008
0.008

1.742
1.658

1.634
1.617

0.352
0.05

0.048
0.102

0.01
0.229

4.872
0.446

0.218
0.48

1.238
0.07

1.394
random

0.137
0.361

0.823
1.166

1.436
0.118

0.036
0.02

0.017
0.08

0.041
0.039

0.05
0.075

0.023
0.015

0.016
1.87

1.747
1.709

1.686
0.53

0.127
0.113

0.162
0.041

0.677
4.618

0.478
0.293

0.573
1.212

0.137
1.192

rectangular
0.125

0.23
0.367

0.477
3.779

0.715
0.299

0.173
0.122

0.437
0.135

0.106
0.128

0.392
0.132

0.119
0.163

0.864
0.84

0.847
0.855

0.081
0.134

0.24
0.35

0.062
1.601

0.997
0.154

0.135
0.372

0.812
0.317

0.613
equilateral

0.115
0.187

0.31
0.419

3.517
0.647

0.27
0.155

0.109
0.385

0.116
0.083

0.094
0.357

0.116
0.105

0.146
0.92

0.892
0.883

0.883
0.085

0.106
0.196

0.299
0.057

1.405
1.086

0.16
0.119

0.342
0.813

0.285
0.582

random
ized

0.116
0.224

0.423
0.559

4.536
0.743

0.298
0.169

0.118
0.481

0.157
0.106

0.112
0.395

0.126
0.102

0.141
0.862

0.839
0.836

0.838
0.083

0.111
0.208

0.311
0.085

1.774
1.118

0.167
0.114

0.324
0.731

0.41
0.821

random
0.216

0.313
0.46

0.55
66.92

2.218
0.808

0.454
0.301

2.423
0.695

0.368
0.285

13.47
2.097

2.916
0.526

0.837
0.806

0.818
0.824

0.114
0.148

0.248
0.349

0.454
5.077

1.066
0.163

0.126
0.351

0.74
1.397

5.401
rectangular

0.426
0.148

0.092
0.081

16.63
2.906

1.203
0.676

0.441
1.757

0.489
0.231

0.14
1.57

0.47
0.239

0.151
1.373

1.114
1.081

1.07
0.424

0.066
0.038

0.06
0.175

6.986
2.007

0.2
0.056

0.178
0.685

1.292
3.806

equilateral
0.474

0.165
0.096

0.078
15.97

2.666
1.098

0.615
0.4

1.544
0.428

0.202
0.122

1.43
0.418

0.208
0.131

1.475
1.171

1.124
1.11

0.51
0.08

0.04
0.057

0.181
6.334

2.231
0.221

0.056
0.165

0.693
1.14

3.827
random

ized
0.474

0.164
0.097

0.081
19.84

3.012
1.206

0.669
0.432

1.928
0.581

0.28
0.169

1.547
0.446

0.233
0.153

1.463
1.166

1.124
1.11

0.505
0.078

0.04
0.059

0.311
7.649

2.212
0.22

0.055
0.165

0.689
1.655

4.69
random

0.592
0.351

0.447
0.567

61.64
8.57

3.177
1.842

1.269
12.33

4.55
2.269

1.349
60.87

9.422
12.08

5.319
1.382

1.112
1.079

1.069
0.495

0.091
0.063

0.083
1.889

21.24
2.036

0.211
0.097

0.235
0.666

6.044
16.6

rectangular
3.224

1.092
0.584

0.382
1.647

19.58
7.931

4.448
2.896

11.9
3.261

1.524
0.89

10.69
3.122

1.581
1.003

4.381
1.941

1.884
1.842

3.423
0.516

0.185
0.11

1.177
49.6

7.834
0.703

0.1
0.123

1.938
9.206

1.645
equilateral

3.561
1.216

0.651
0.427

1.654
17.41

6.968
3.88

2.517
9.99

2.714
1.265

0.741
9.244

2.648
1.314

0.823
5.132

2.007
1.919

1.901
4.197

0.625
0.223

0.126
1.22

43.21
8.513

0.758
0.106

0.125
2.066

7.798
1.654

random
ized

3.618
1.206

0.654
0.431

2.008
19.99

7.763
4.265

2.745
12.65

3.692
1.759

1.037
10.22

2.848
1.476

0.97
4.938

1.987
1.917

1.899
4.042

0.605
0.215

0.123
2.085

51.82
8.531

0.765
0.106

0.119
2.055

11.72
1.819

random
4.387

2.329
2.392

2.675
10.2

54.32
19.9

11.41
8

84.7
45.68

30.93
21.78

384.2
193

81.83
261.8

4.577
1.964

1.895
1.876

3.922
0.605

0.233
0.148

12.98
137.6

7.854
0.764

0.294
0.39

1.903
40.63

6.557
coarse

0.599
1.044

1.443
1.693

364.8
2.041

1.005
0.849

0.929
5.143

1.675
1.226

1.323
26.77

8.416
6.086

9.234
1.933

1.885
1.885

1.916
0.446

0.789
1.126

1.454
0.866

4.634
0.97

0.605
1.298

1.9
1.967

1.7
8.377

m
edium

0.696
0.565

0.68
0.823

168
6.355

2.892
1.935

1.494
25.76

8.883
4.467

2.792
141.4

50.29
20.15

12.88
2.158

1.951
1.956

1.973
0.517

0.272
0.401

0.571
1.761

14.4
1.286

0.445
1.005

1.856
2.062

5.132
21.88

fine
2.552

1.482
1.218

1.094
66.37

26.47
11.76

7.889
6.148

136.1
71.27

47.27
33.53

774.6
240.8

210.4
120.7

2.651
1.654

1.57
1.567

1.668
0.311

0.159
0.158

7.213
62.32

3.643
0.363

0.279
0.754

2.184
22.64

23.96
coarse

0.373
0.674

1.012
1.196

5.134
0.677

0.373
0.406

0.544
0.531

0.472
0.637

0.831
1.026

1.223
2.365

2.146
1.591

1.511
1.509

1.528
0.303

0.484
0.742

1.019
0.8

1.925
1.583

0.358
0.581

1.232
1.527

0.471
0.95

m
edium

0.396
0.314

0.396
0.508

14.3
1.889

0.729
0.425

0.32
1.181

0.402
0.3

0.317
1.013

0.36
0.592

0.809
1.952

1.73
1.707

1.704
0.409

0.151
0.219

0.337
0.335

5.685
2.069

0.295
0.412

0.962
1.397

1.097
3.147

fine
1.453

0.936
0.723

0.643
50.3

7.442
2.735

1.474
0.954

4.475
1.245

0.603
0.4

3.757
1.037

0.531
0.395

4.403
3.888

3.839
3.801

1.517
0.242

0.114
0.152

0.908
24.26

4.359
0.433

0.433
1.17

3.04
4.327

13.01
coarse

0.606
1.063

1.47
1.725

331
2.423

1.117
0.912

0.985
5.109

1.628
1.235

1.351
25.82

8.246
7.331

4.83
1.945

1.907
1.913

1.946
0.437

0.807
1.158

1.488
0.93

4.892
0.986

0.613
1.324

1.651
1.999

1.768
9.119

m
edium

0.696
0.562

0.676
0.819

168.3
6.598

3.033
2.025

1.549
25.16

8.731
4.402

2.662
164.7

612.8
17

17.18
2.165

1.95
1.958

1.975
0.519

0.27
0.401

0.573
1.784

14.51
1.281

0.446
1.009

1.55
2.066

5.167
21.99

fine
2.542

1.506
1.252

1.135
66.23

26.6
11.91

8.006
6.239

136.5
72.81

48.65
33.62

551.1
239.7

126.6
107.3

2.653
1.657

1.569
1.567

1.666
0.312

0.16
0.159

7.139
62.33

3.624
0.36

0.277
0.585

2.176
22.6

23.88
coarse

0.42
0.692

0.929
1.085

5.573
0.748

0.415
0.418

0.53
0.564

0.461
0.603

0.777
0.704

1.481
1.428

1.673
1.611

1.523
1.505

1.513
0.363

0.514
0.716

0.967
0.849

2.116
1.63

0.43
0.7

0.843
1.484

0.54
1.078

m
edium

0.402
0.323

0.401
0.513

14.47
1.909

0.737
0.432

0.326
1.193

0.407
0.303

0.318
1

0.365
0.699

0.938
1.953

1.732
1.707

1.703
0.417

0.156
0.222

0.339
0.339

5.779
2.086

0.301
0.414

0.858
1.396

1.122
3.199

fine
1.444

0.927
0.719

0.638
49.72

7.363
2.71

1.462
0.946

4.449
1.233

0.599
0.395

3.736
0.994

0.527
0.389

4.407
3.896

3.839
3.801

1.521
0.241

0.115
0.154

0.898
24.01

4.314
0.429

0.437
1.039

3.029
4.312

12.83
rectangular

0.422
0.174

0.174
0.223

15.77
2.823

1.178
0.662

0.434
1.696

0.501
0.275

0.234
1.517

0.467
0.249

0.189
1.513

1.233
1.206

1.195
0.442

0.096
0.142

0.28
0.173

6.73
5.457

0.755
0.167

0.263
0.793

1.254
3.452

equilateral
0.451

0.174
0.154

0.186
16.36

2.922
1.203

0.676
0.442

1.74
0.504

0.264
0.198

1.645
0.484

0.25
0.179

1.542
1.2

1.176
1.172

0.488
0.093

0.123
0.253

0.177
6.931

5.813
0.778

0.161
0.23

0.848
1.296

3.689
random

ized
0.463

0.177
0.166

0.2
20.56

3.318
1.335

0.743
0.484

2.159
0.662

0.35
0.254

1.823
0.529

0.291
0.215

1.519
1.175

1.162
1.159

0.497
0.091

0.123
0.255

0.314
8.405

5.863
0.801

0.166
0.23

0.836
1.886

4.699
random

0.791
0.72

1.041
1.224

72.51
10.12

3.845
2.219

1.577
15.26

5.886
3.12

2.19
28.14

87.65
252.6

19.27
1.64

1.344
1.302

1.296
0.515

0.182
0.272

0.429
2.143

26.01
6.012

0.848
0.218

0.368
0.832

7.371
19.11

rectangular
0.841

0.297
0.191

0.174
35.64

6.481
2.662

1.496
0.973

3.819
1.072

0.525
0.338

3.421
1.017

0.521
0.335

2.064
1.533

1.47
1.436

0.84
0.14

0.111
0.201

0.352
15.46

4.685
0.493

0.175
0.396

1.048
2.858

8.489
equilateral

0.932
0.323

0.196
0.164

36.47
6.536

2.661
1.495

0.973
3.871

1.082
0.524

0.33
3.667

1.058
0.525

0.332
2.16

1.52
1.443

1.41
0.969

0.157
0.108

0.188
0.379

15.7
5.029

0.52
0.162

0.362
1.072

2.908
8.95

random
ized

0.932
0.323

0.201
0.172

44.51
7.482

2.958
1.64

1.06
4.786

1.431
0.699

0.44
4.002

1.12
0.582

0.391
2.12

1.505
1.432

1.401
0.951

0.149
0.107

0.191
0.666

19.01
5.041

0.525
0.167

0.363
1.067

4.35
10.95

random
1.485

1.188
1.464

1.61
81.4

20.77
7.675

4.363
3.058

27.64
11.49

7.252
4.779

109.2
26.57

27.43
10.11

2.135
1.593

1.524
1.5

0.97
0.21

0.203
0.301

4.295
51.8

4.835
0.536

0.252
0.494

1.041
14.84

27.21
rectangular

2.164
0.731

0.403
0.273

24.51
17.66

7.224
4.037

2.616
10.31

2.842
1.339

0.792
9.231

2.714
1.375

0.873
3.322

1.858
1.711

1.667
2.146

0.328
0.144

0.146
0.935

41.66
4.608

0.44
0.243

0.519
1.215

7.953
7.698

equilateral
2.373

0.799
0.439

0.295
19.34

17.57
7.055

3.934
2.551

10.28
2.826

1.329
0.783

9.741
2.76

1.353
0.833

3.583
1.865

1.686
1.639

2.431
0.37

0.155
0.148

0.964
42.16

4.914
0.46

0.229
0.489

1.25
7.936

6.342
random

ized
2.403

0.799
0.441

0.3
22.29

20.02
7.825

4.305
2.771

12.68
3.744

1.794
1.062

10.74
2.949

1.497
0.963

3.495
1.849

1.679
1.633

2.427
0.359

0.152
0.148

1.775
50.69

4.9
0.459

0.226
0.48

1.235
11.92

8.369
random

3.868
2.562

2.607
2.68

35.75
55.38

21.23
12.46

8.91
80.12

43.02
30.4

21.81
331.5

133
86.84

48.13
3.414

1.909
1.768

1.738
2.493

0.415
0.233

0.231
12.24

132.9
4.602

0.497
0.299

0.561
1.207

38.89
17.69

im
plicit 

inexact
M

C

D
C

nurbs
coarse

m
edium

fine

explicit
coarse

m
edium

fine

im
plicit 

exact
M

C

D
C

nurbs

M
C

D
C

M
C

D
C

coarse

m
edium

fine

explicit
coarse

m
edium

fine

im
plicit 

exact

im
plicit 

inexact

Table 2: Results summary. For column legend see Table 1.
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id. estimator ē
1 Cohen-Steiner & Morvan [CSM03], range 2l̄ 94.2
2 Cohen-Steiner & Morvan [CSM03], range 4l̄ 29.0
3 Cohen-Steiner & Morvan [CSM03], range 6l̄ 20.8
4 Cohen-Steiner & Morvan [CSM03], range 8l̄ 19.4
5 Fünfzig et al. [FMHF08] 2001.5
6 Goldfeather & Interrante [GI04], fitting cir-

cle, range 2l̄
39.4

7 Goldfeather & Interrante [GI04], fitting cir-
cle, range 4l̄

15.2

8 Goldfeather & Interrante [GI04], fitting cir-
cle, range 6l̄

8.7

9 Goldfeather & Interrante [GI04], fitting cir-
cle, range 8l̄

6.2

10 Goldfeather & Interrante [GI04], fitting
parabola, range 2l̄

107.9

11 Goldfeather & Interrante [GI04], fitting
parabola, range 4l̄

39.2

12 Goldfeather & Interrante [GI04], fitting
parabola, range 6l̄

22.3

13 Goldfeather & Interrante [GI04], fitting
parabola, range 8l̄

16.0

14 Goldfeather & Interrante [GI04], fitting
parabola with normals, range 2l̄

12710.9

15 Goldfeather & Interrante [GI04], fitting
parabola with normals, range 4l̄

1072.8

16 Goldfeather & Interrante [GI04], fitting
parabola with normals, range 6l̄

386.3

17 Goldfeather & Interrante [GI04], fitting
parabola with normals, range 8l̄

76.1

18 Hildebrandt & Polthier [HP11], Ŝ estimation,
range 2l̄

2214.0

19 Hildebrandt & Polthier [HP11], Ŝ estimation,
range 4l̄

2130.2

20 Hildebrandt & Polthier [HP11], Ŝ estimation,
range 6l̄

2104.3

21 Hildebrandt & Polthier [HP11], Ŝ estimation,
range 8l̄

2098.0

22 Hildebrandt & Polthier [HP11], S̄ estimation,
range 2l̄

136.3

23 Hildebrandt & Polthier [HP11], S̄ estimation,
range 4l̄

38.0

24 Hildebrandt & Polthier [HP11], S̄ estimation,
range 6l̄

30.6

25 Hildebrandt & Polthier [HP11], S̄ estimation,
range 8l̄

50.2

26 Kalogerakis et al. [KSNS07] 6.0
27 Meyer [MDSB02] 100.4
28 Pottmann et al. [PWHY09], ScaleRatio 0.02 9116.8
29 Pottmann et al. [PWHY09], ScaleRatio 0.045 802.6
30 Pottmann et al. [PWHY09], ScaleRatio 0.1 109.1
31 Pottmann et al. [PWHY09], ScaleRatio 0.225 168.6
32 Pottmann et al. [PWHY09], ScaleRatio 0.5 2260.6
33 Rusinkiewicz [Rus04] 25.7
34 Zhihong et al. [ZGYL11] 1871.0

Table 1: Columns notation for Table 2. l̄ stands for average edge
length.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

280




