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Abstract

Analysing and generating digital human shapes is crucial for a wide variety of

applications ranging from movie production to healthcare. The most common

approaches for the analysis and generation of digital human shapes involve the

creation of statistical shape models. At the heart of these techniques is the

de�nition of a mapping between shapes and a low-dimensional representation.

However, making these representations interpretable is still an open challenge.

This thesis explores latent disentanglement as a powerful technique to make

the latent space of geometric deep learning based statistical shape models

more structured and interpretable. In particular, it introduces two novel tech-

niques to disentangle the latent representation of variational autoencoders and

generative adversarial networks with respect to the local shape attributes char-

acterising the identity of the generated body and head meshes. This work was

inspired by a shape completion framework that was proposed as a viable alter-

native to intraoperative registration in minimally invasive surgery of the liver.

In addition, one of these methods for latent disentanglement was also applied

to plastic surgery, where it was shown to improve the diagnosis of craniofacial

syndromes and aid surgical planning.



Impact Statement

The latent disentanglement techniques introduced to control the generation of

digital human shapes has immediate application in the creative industry. In

fact, the proposed techniques can simplify the character generation process in

movie and video game production, augmented reality, and virtual reality. In

these �elds, highly skilled artists usually engage in months-long manual design

processes to create realistic digital human shapes. The proposed generative

models can generate a wide variety of realistic human subjects in interactive

interfaces that provide real-time and �ne-grained control over the generation.

The graphical user interface developed to demonstrate this (Ch. 6), highlights

also how the proposed methods can democratise the character generation pro-

cess. In fact, it could be embedded in video games and metaverse applications,

where users can create their own characters without being limited by the design

choices of the current platforms {that usually perform local linear interpola-

tions between two artist-generated shapes, or let users select a shape from a

set of prede�ned examples.

The proposed models can e�ectively be considered interpretable priors.

As such, they can bene�t a wide variety of computer vision applications. One

future application could be the intraoperative liver surface completion frame-

work that was tackled during the early part of this work. Even without local

disentanglement, the framework showed its potential as an alternative to in-

traoperative surface registration. While more work is still needed, the use of

latent disentanglement could provide a new level of control for intraoperative

registration tasks, and enable computationally feasible real-time registration



Impact Statement 9

methods with realistic priors on the modes of variation.

The use of latent disentanglement to analyse head shapes of patients with

Apert, Crouzon, and Muenke syndromes provided insights into how di�erent

anatomical sub-units inuence syndromes. The integration of the method

in the current clinical workow can already improve the diagnosis of complex

cases, assist on the selection of the surgical approach, and aid surgical planning

by showing the statistically desired result. In addition, it also opened new

avenues for the objective evaluation of surgical outcomes. Finally, if data

were available, this method could have a signi�cant diagnostic impact on the

evaluation of syndromes with more subtle deformities or in prenatal stages.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

Digital humans are computer representations of human beings that have be-

come central elements in many applications. In the movie, video-game, and

advertisement industries, digital humans provide new opportunities to create

more immersive and impactful experiences. They can be easily manipulated to

�t a speci�c artistic vision, but more importantly, in movies, they can also be

used to replace deceased actors or stunt performers in dangerous shots [201]. In

Augmented Reality (AR) and in Virtual Reality (VR), they allow for the cre-

ation of interactive and lifelike experiences that can be used for entertainment,

communication, or training purposes [227, 209]. Currently, the Metaverse is

the VR application that is expected to disrupt the future of the web as we

know it by allowing users to work, meet, play, and socialise in 3D virtual

worlds [147]. Digital humans {who could be either controlled by real people or

by Arti�cial Intelligence (AI) techniques{ are arguably the most important el-

ement of the Metaverse, as they are going to be the main inhabitants of these

virtual worlds. In healthcare, digital humans often require internal organs

and they can be used to train healthcare professionals in real-life simulations

of medical procedures, to enhance patient consultations, to perform surgical

planning and simulation, to improve surgical procedures with Computer As-

sisted Surgery (CAS), and even for diagnostic purposes [134, 166]. Digital
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humans are essential also for ergonomics studies, in the clothing industry, the

military, in social media, and in many other �elds.

Digital humans are structured objects with multiple components that

change according to the application scenario. For example, when photo-realism

is required, they are usually characterised by their shape, material and shading

properties, as well as hair and clothes. Although some of these components

are not always required, the geometric shape of a digital human, or part of it,

is always present. Recent research has focused on investigating implicit shape

representations, where continuous functions are used to represent volumes and

surfaces [222, 223, 18, 189]. Although they can represent watertight surfaces

with arbitrary surface topology and resolution, they are not yet optimised for

editing, simulation, and rendering [38], making them di�cult to integrate in

many application scenarios. Therefore, even implicit shape representations are

often converted into explicit representations, such as meshes and point-clouds.

These more traditional representations, and meshes in particular, are the most

widely adopted to represent the geometric shape of digital humans.

Creating digital humans is extremely di�cult, especially when realism is

required. A common method to create realistic digital humans is to digitise

real people with scanning systems and capturing techniques [53, 227]. This can

be achieved with complex multi-camera setups leveraging controlled lighting

conditions, 3D scanners, medical imaging devices like Computed Tomography

(CT) and Magnetic Resonance Imaging (MRI), or even with a single camera

in-the-wild. However, the quality and type of information that can be captured

varies according to the acquisition method. When capturing a real human is

not an option because having a digital double is not the main goal, digital

humans need to be fully synthesised. Currently, this generation procedure

is either manually performed by highly skilled artists or it involves consumer-

level avatar design tools characterised by sets of sliders that are used to change

the avatar's shape. However, digitally sculpting just the geometric shape of

the head of a character can easily require a highly skilled digital artist weeks
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to months of work [72], thus making the manual procedure viable only for

a handful of users and application scenarios. On the other hand, the many

semi-automated avatar design tools developed to make the generation pro-

cess simpler and faster, all inherit the intrinsic constraints of their underlying

generative techniques.

The most common generative models for digital human meshes are cur-

rently based upon blendshapes [125, 158, 195], Principal Component Analysis

(PCA) [21, 168, 115], Variational Autoencoders (VAEs) [174, 69, 12, 44], or

Generative Adversarial Networks (GANs) [39, 66, 112, 2]. Some of these mod-

els, like those based on PCA or Autoencoder (AE) architectures, are also of-

ten used for shape analysis purposes [100, 107, 162]. Interestingly, when Deep

Learning (DL) models such as AEs, VAEs, and GANs operate on meshes,

Geometric Deep Learning (GDL) techniques need to be used instead of the

traditional DL-operators developed to operate in Euclidean domains. In ad-

dition, the aforementioned generative models all share one particular issue:

the creation of local features is di�cult or even impossible. In fact, not only

do generative coe�cients (or latent variables) lack any semantic meaning, but

they also create global changes in the output shape. Similarly, when models

based on PCA, AEs, or VAEs are used for shape analysis, they produce latent

representations encoding global shape properties that are di�cult to interpret,

thus making local shape analysis impossible. For this reason, this thesis focuses

on the creation of GDL-based models for shape analysis and generation that

leverage latent disentanglement, which is a desirable property to o�er control

over local shape attributes.

By de�nition [16], with a disentangled latent representation, changes

in one latent variable a�ect only one factor of variation while being in-

variant to changes in other factors. More interpretable and structured la-

tent representations of data that expose their semantic meaning have been

widely researched in the arti�cial intelligence community in relation to 2D im-

ages [82, 96, 105, 55, 50, 205, 176], but this is still an open problem especially
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for generative models of 3D shapes [12]. Most research on latent disentangle-

ment of generative models for the 3D shape of digital humans addresses the

problem of disentangling the pose and expression of a subject from its iden-

tity [12, 11, 44, 2, 219, 123, 222], but none of these works is able to provide

disentanglement over the latent variables controlling the local attributes char-

acterising the identity. Note that in this thesis, the identity is described by

the pose and expression invariant intrinsic geometric properties of a digital

human shape. As the identity is independent from extrinsic properties such as

pose and expression, subjects are represented with a standardised pose (i.e.,

the \T" pose) and a neutral expression.

1.2 Aim of the Thesis
The overall goal of this PhD thesis is to improve the analysis and generation

of digital human's shapes by proposing new latent disentanglement techniques

for GDL-based models. With a growing interest in the Metaverse, simpli-

�ed creation processes for diverse digital humans will become increasingly

important. These processes will bene�t experienced artists across multiple

industries and, more importantly, will democratise the character generation

process by allowing users with no artistic skills to easily create their unique

avatars. In addition, the improved disentanglement will open new avenues

for shape analysis, which, in this thesis, is applied in the medical domain in

relation to severe craniofacial deformities.

The research hypotheses that guide this PhD work can be summarised as:

ˆ Hypothesis 1 (H1 ): The latent disentanglement of local shape attributes

can improve the control over the generation of 3D human shapes.

ˆ Hypothesis 2 (H2 ): The latent disentanglement of local shape attributes

can improve the analysis of human shapes and provide medical insights.

The two hypotheses are proved in relation to di�erent application scenarios

involving digital humans.
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1.3 Structure of the Thesis

This dissertation is organised as follow:

Chapter 2 provides an overview of the background information and related

works useful to better understand the following chapters.

Chapter 3 inspired the formulation ofH1 and describes how a GDL-based

generative model trained on complete 3D shapes can be embedded in a shape

completion procedure as an alternative to intraoperative registration. The

algorithm is applied to laparoscopic liver Minimally Invasive Surgery (MIS).

Given the preoperative shape of a liver and the partial point cloud repre-

senting its visible intraoperative surface, the proposed method predicts the

intraoperative complete shape of the liver. Some level of disentanglement is

imposed by construction as, during shape completion, latent shape properties

are separately optimised from rotations and translations. However, the latent

representation of the generative model is still entangled. In fact, traversing the

latent variables highlighted their lack of semantic meaning as well as the lack

of control over local shape attributes. These issues hindered the development

of more advanced techniques for shape completion in liver surgery and moti-

vated the research of new latent disentanglement techniques for GDL-based

generative models.

Chapter 4 provesH1 and details a novel method to obtain more disentan-

gled, interpretable, and structured latent representations for 3D VAEs. The

new disentanglement technique based on a curated mini-batching procedure

and a new latent consistency loss was used to train the Swap Disentangled

VAE (SD-VAE) on 3D shapes of heads and bodies.

Chapter 5 addressesH2 by analysing head shapes of babies born with

craniofacial syndromes. The SD-VAE introduced in Chapter 4 is also at the

core of this work, which opens new avenues for craniofacial diagnosis and

surgical planning.

Chapter 6 focuses again onH1 , proposing a new latent disentanglement

method for generative models of head and body shapes. The newly introduced
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Local Eigenprojection Disentangled Models (LED-Models) overcome some of

the main limitations of SD-VAE and are an alternative approach particularly

useful for shape generation.

Finally, chapter 7, compares the newly introduced methods, providing

recommendations on their adoption with respect to potential applications, and

illustrates future research directions.



Chapter 2

Background

This chapter provides the necessary technical background and context for the

rest of the thesis. Not only does it present the current state of the art, but

it also details the key techniques discussed throughout the thesis. As detailed

in Sec. 1.2, the aim of the thesis is to improve the analysis and generation

of digital human shapes by improving latent disentanglement in GDL-based

data-driven models. Therefore, Sec. 2.1 de�nes the shape representation used

throughout this thesis, while Sec. 2.2 focuses on popular Statistical Shape

Models (SSMs) for shape analysis and generation, Sec. 2.3 on GDL, Sec. 2.4

on latent disentanglement, and Sec. 2.5 on spectral geometry concepts widely

adopted in the following chapters. Note that this thesis also encompasses solu-

tions for medical applications. The description of medical-related background

information is provided in the relevant chapters.

2.1 Shape Representation

In computer graphics and vision, three-dimensional shapes have multiple po-

tential representations. Explicit representations such as voxelizations, point-

clouds, and meshes are currently the most popular. Voxel-based representa-

tions (Fig. 2.1, left) are a discrete grid in the Euclidean space where each

Cartesian coordinate identi�es a unique point in the space, a voxel. To each

voxel is assigned a value that de�nes whether it is part of the object or of

the background. In other words, voxels are three-dimensional pixels and vox-
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