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thank Jérémy Levallois, Valentin Deschaintre, and Robin Faury. I am

deeply grateful for the opportunity to have worked alongside such remarkable

groups of talented and inspiring researchers. Each and every one of you has

played a significant role in influencing my research, making me even more

passionate about computer graphics and digital humans.

During the PhD I met a lot of great people that I consider to be my

friends, arguably far too many to mention here. I will try to be brief! I would

like to start by thanking Bongjin (yes, you get acknowledged twice!), as well

as João, and Henry, with whom I had a lot of fun at work, at the pub, at

dinner, and most importantly at the table tennis table. Table tennis surely

played a crucial role in creating a sense of social cohesion and community

within our research centre. In fact, I would like to extend my gratitude also

to Nick, Matas, and all the other dear colleagues who played with me during

our breaks from work. Thank you to Alex and Luke –also known as the

basement guys of the FaceValue group– with whom I had great fun in the last

year. Thank you to my fellow intern Sebastian for the great company during

our countless late nights at Disney Research. Many thanks to Julien, whom

I had the pleasure of meeting during my internship at Adobe Research, for

the enjoyable dinners, insightful discussions, and shared Whiskey. Thanks to

Bea and François for the delightful walks we took together at Hampstead

Heath, and for the many insightful research discussions we had during those



Acknowledgements 5

walks. Grazie mille for the fun we had together also toLuca M. and the

way too many Italians of Weiss who prevented me from forgetting my native

language. Grazie mille also toGabri and Luca C. , whom I had the pleasure

of meeting during my MSc while visiting Carnegie Mellon University. Thank

you for the wonderful memories we created together while travelling around

the US, taking overnight breaks from work, cooking delicious Italian meals,

and simply enjoying each other's company. More importantly, thank you for

being a great inspiration for me to pursue a PhD!

Now, I would like to take a moment to express my gratitude to some

special people whom I have known since long before beginning my PhD. To

those who may not understand Italian, my apologies. I am con�dent that with

the help of an automatic translator or some good-natured gesturing, you will

be able to follow along.

Azioni, decisioni, esperienze, amicizie e conoscenze in
uenzano inevitabil-

mente lo sviluppo della persona gi�a a partire dalla nascita. Con questo pre-

supposto dovrei scrivere una lista di ringraziamenti pressoch�e in�nita. Non

essendo n�e possibile n�e quantomeno sensato, limiter�o i ringraziamenti alle per-

sone che hanno maggiormente in
uenzato la mia vita e con le quali sono ri-

masto maggiormente in contatto. Ci tengo a sottolineare che vorrei ringraziare

molte pi�u persone e, nonostante i loro nomi non siano esplicitamente stati men-

zionati, erano impressi nella mia mente durante la stesura di questa sezione.

Ritengo che un ringraziamento speciale sia dovuto a due dei miei pi�u

�dati amici: Davide e Luca. Ringrazio Davide , mio compagno di barca, per

tutte le giornate di allenamento, di vacanza, di gioco e divertimento, nonch�e

per le discussioni pi�u strampalate ed interessanti che abbia mai avuto al di

fuori di un contesto lavorativo. RingrazioLuca S. per aver reso divertenti

anche le pi�u noiose giornate scolastiche, per tutti gli indimenticabili momenti

passati assieme e la sue invidiabili ambizioni personali e lavorative, che hanno

fortemente condizionato e motivato anche me. Nonostante la lontananza abbia

contribuito a farci perdere un po' i contatti, ringrazio ancheLorenzo eGiulia ,



Acknowledgements 6

i quali hanno fortemente contribuito alla persona che sono.

Uno dei ringraziamenti pi�u speciali non pu�o che essere rivolto aSara, la

quale �e sempre stata al mio �anco seguendomi in giro per il mondo. Grazie per

esserci sempre e (praticamente) da sempre! Grazie per sopportarmi nonstante

io spesso viva su quello che sembra essere un fuso orario completamente diverso.

Ma sopratutto, grazie per il tuo appoggio incondizionato.

Un altro ringraziamento speciale va indubbiamente alla mia famiglia,

che mi ha sempre supportato ed incoraggiato. Ritengo non ci sia membro

famigliare che non meriti un ringraziamento, quindi estendo la mia gratitu-

dine a tutta la famiglia. Inoltre ritengo siano dovute anche delle scuse a mia

Mamma , ed ai miei fratelli Mario e Valeria , ai quali non sono stato vicino

come avrei sperato negli ultimi anni. In�ne, ci tengo a ringraziare mia nonna

Alida , la quale fu anche la mia prima maestra che, con in�nita pazienza, mi

insegn�o a disegnare, leggere e scrivere ben prima di iniziare la scuola. Questa

tesi la dedico a te sebbene tu non sia qui per poterla leggere.



Abstract

Analysing and generating digital human shapes is crucial for a wide variety of

applications ranging from movie production to healthcare. The most common

approaches for the analysis and generation of digital human shapes involve the

creation of statistical shape models. At the heart of these techniques is the

de�nition of a mapping between shapes and a low-dimensional representation.

However, making these representations interpretable is still an open challenge.

This thesis explores latent disentanglement as a powerful technique to make

the latent space of geometric deep learning based statistical shape models

more structured and interpretable. In particular, it introduces two novel tech-

niques to disentangle the latent representation of variational autoencoders and

generative adversarial networks with respect to the local shape attributes char-

acterising the identity of the generated body and head meshes. This work was

inspired by a shape completion framework that was proposed as a viable alter-

native to intraoperative registration in minimally invasive surgery of the liver.

In addition, one of these methods for latent disentanglement was also applied

to plastic surgery, where it was shown to improve the diagnosis of craniofacial

syndromes and aid surgical planning.



Impact Statement

The latent disentanglement techniques introduced to control the generation of

digital human shapes has immediate application in the creative industry. In

fact, the proposed techniques can simplify the character generation process in

movie and video game production, augmented reality, and virtual reality. In

these �elds, highly skilled artists usually engage in months-long manual design

processes to create realistic digital human shapes. The proposed generative

models can generate a wide variety of realistic human subjects in interactive

interfaces that provide real-time and �ne-grained control over the generation.

The graphical user interface developed to demonstrate this (Ch. 6), highlights

also how the proposed methods can democratise the character generation pro-

cess. In fact, it could be embedded in video games and metaverse applications,

where users can create their own characters without being limited by the design

choices of the current platforms {that usually perform local linear interpola-

tions between two artist-generated shapes, or let users select a shape from a

set of prede�ned examples.

The proposed models can e�ectively be considered interpretable priors.

As such, they can bene�t a wide variety of computer vision applications. One

future application could be the intraoperative liver surface completion frame-

work that was tackled during the early part of this work. Even without local

disentanglement, the framework showed its potential as an alternative to in-

traoperative surface registration. While more work is still needed, the use of

latent disentanglement could provide a new level of control for intraoperative

registration tasks, and enable computationally feasible real-time registration
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methods with realistic priors on the modes of variation.

The use of latent disentanglement to analyse head shapes of patients with

Apert, Crouzon, and Muenke syndromes provided insights into how di�erent

anatomical sub-units in
uence syndromes. The integration of the method

in the current clinical work
ow can already improve the diagnosis of complex

cases, assist on the selection of the surgical approach, and aid surgical planning

by showing the statistically desired result. In addition, it also opened new

avenues for the objective evaluation of surgical outcomes. Finally, if data

were available, this method could have a signi�cant diagnostic impact on the

evaluation of syndromes with more subtle deformities or in prenatal stages.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

Digital humans are computer representations of human beings that have be-

come central elements in many applications. In the movie, video-game, and

advertisement industries, digital humans provide new opportunities to create

more immersive and impactful experiences. They can be easily manipulated to

�t a speci�c artistic vision, but more importantly, in movies, they can also be

used to replace deceased actors or stunt performers in dangerous shots [201]. In

Augmented Reality (AR) and in Virtual Reality (VR), they allow for the cre-

ation of interactive and lifelike experiences that can be used for entertainment,

communication, or training purposes [227, 209]. Currently, the Metaverse is

the VR application that is expected to disrupt the future of the web as we

know it by allowing users to work, meet, play, and socialise in 3D virtual

worlds [147]. Digital humans {who could be either controlled by real people or

by Arti�cial Intelligence (AI) techniques{ are arguably the most important el-

ement of the Metaverse, as they are going to be the main inhabitants of these

virtual worlds. In healthcare, digital humans often require internal organs

and they can be used to train healthcare professionals in real-life simulations

of medical procedures, to enhance patient consultations, to perform surgical

planning and simulation, to improve surgical procedures with Computer As-

sisted Surgery (CAS), and even for diagnostic purposes [134, 166]. Digital
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humans are essential also for ergonomics studies, in the clothing industry, the

military, in social media, and in many other �elds.

Digital humans are structured objects with multiple components that

change according to the application scenario. For example, when photo-realism

is required, they are usually characterised by their shape, material and shading

properties, as well as hair and clothes. Although some of these components

are not always required, the geometric shape of a digital human, or part of it,

is always present. Recent research has focused on investigating implicit shape

representations, where continuous functions are used to represent volumes and

surfaces [222, 223, 18, 189]. Although they can represent watertight surfaces

with arbitrary surface topology and resolution, they are not yet optimised for

editing, simulation, and rendering [38], making them di�cult to integrate in

many application scenarios. Therefore, even implicit shape representations are

often converted into explicit representations, such as meshes and point-clouds.

These more traditional representations, and meshes in particular, are the most

widely adopted to represent the geometric shape of digital humans.

Creating digital humans is extremely di�cult, especially when realism is

required. A common method to create realistic digital humans is to digitise

real people with scanning systems and capturing techniques [53, 227]. This can

be achieved with complex multi-camera setups leveraging controlled lighting

conditions, 3D scanners, medical imaging devices like Computed Tomography

(CT) and Magnetic Resonance Imaging (MRI), or even with a single camera

in-the-wild. However, the quality and type of information that can be captured

varies according to the acquisition method. When capturing a real human is

not an option because having a digital double is not the main goal, digital

humans need to be fully synthesised. Currently, this generation procedure

is either manually performed by highly skilled artists or it involves consumer-

level avatar design tools characterised by sets of sliders that are used to change

the avatar's shape. However, digitally sculpting just the geometric shape of

the head of a character can easily require a highly skilled digital artist weeks
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to months of work [72], thus making the manual procedure viable only for

a handful of users and application scenarios. On the other hand, the many

semi-automated avatar design tools developed to make the generation pro-

cess simpler and faster, all inherit the intrinsic constraints of their underlying

generative techniques.

The most common generative models for digital human meshes are cur-

rently based upon blendshapes [125, 158, 195], Principal Component Analysis

(PCA) [21, 168, 115], Variational Autoencoders (VAEs) [174, 69, 12, 44], or

Generative Adversarial Networks (GANs) [39, 66, 112, 2]. Some of these mod-

els, like those based on PCA or Autoencoder (AE) architectures, are also of-

ten used for shape analysis purposes [100, 107, 162]. Interestingly, when Deep

Learning (DL) models such as AEs, VAEs, and GANs operate on meshes,

Geometric Deep Learning (GDL) techniques need to be used instead of the

traditional DL-operators developed to operate in Euclidean domains. In ad-

dition, the aforementioned generative models all share one particular issue:

the creation of local features is di�cult or even impossible. In fact, not only

do generative coe�cients (or latent variables) lack any semantic meaning, but

they also create global changes in the output shape. Similarly, when models

based on PCA, AEs, or VAEs are used for shape analysis, they produce latent

representations encoding global shape properties that are di�cult to interpret,

thus making local shape analysis impossible. For this reason, this thesis focuses

on the creation of GDL-based models for shape analysis and generation that

leverage latent disentanglement, which is a desirable property to o�er control

over local shape attributes.

By de�nition [16], with a disentangled latent representation, changes

in one latent variable a�ect only one factor of variation while being in-

variant to changes in other factors. More interpretable and structured la-

tent representations of data that expose their semantic meaning have been

widely researched in the arti�cial intelligence community in relation to 2D im-

ages [82, 96, 105, 55, 50, 205, 176], but this is still an open problem especially
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for generative models of 3D shapes [12]. Most research on latent disentangle-

ment of generative models for the 3D shape of digital humans addresses the

problem of disentangling the pose and expression of a subject from its iden-

tity [12, 11, 44, 2, 219, 123, 222], but none of these works is able to provide

disentanglement over the latent variables controlling the local attributes char-

acterising the identity. Note that in this thesis, the identity is described by

the pose and expression invariant intrinsic geometric properties of a digital

human shape. As the identity is independent from extrinsic properties such as

pose and expression, subjects are represented with a standardised pose (i.e.,

the \T" pose) and a neutral expression.

1.2 Aim of the Thesis
The overall goal of this PhD thesis is to improve the analysis and generation

of digital human's shapes by proposing new latent disentanglement techniques

for GDL-based models. With a growing interest in the Metaverse, simpli-

�ed creation processes for diverse digital humans will become increasingly

important. These processes will bene�t experienced artists across multiple

industries and, more importantly, will democratise the character generation

process by allowing users with no artistic skills to easily create their unique

avatars. In addition, the improved disentanglement will open new avenues

for shape analysis, which, in this thesis, is applied in the medical domain in

relation to severe craniofacial deformities.

The research hypotheses that guide this PhD work can be summarised as:

ˆ Hypothesis 1 (H1 ): The latent disentanglement of local shape attributes

can improve the control over the generation of 3D human shapes.

ˆ Hypothesis 2 (H2 ): The latent disentanglement of local shape attributes

can improve the analysis of human shapes and provide medical insights.

The two hypotheses are proved in relation to di�erent application scenarios

involving digital humans.
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1.3 Structure of the Thesis

This dissertation is organised as follow:

Chapter 2 provides an overview of the background information and related

works useful to better understand the following chapters.

Chapter 3 inspired the formulation ofH1 and describes how a GDL-based

generative model trained on complete 3D shapes can be embedded in a shape

completion procedure as an alternative to intraoperative registration. The

algorithm is applied to laparoscopic liver Minimally Invasive Surgery (MIS).

Given the preoperative shape of a liver and the partial point cloud repre-

senting its visible intraoperative surface, the proposed method predicts the

intraoperative complete shape of the liver. Some level of disentanglement is

imposed by construction as, during shape completion, latent shape properties

are separately optimised from rotations and translations. However, the latent

representation of the generative model is still entangled. In fact, traversing the

latent variables highlighted their lack of semantic meaning as well as the lack

of control over local shape attributes. These issues hindered the development

of more advanced techniques for shape completion in liver surgery and moti-

vated the research of new latent disentanglement techniques for GDL-based

generative models.

Chapter 4 provesH1 and details a novel method to obtain more disentan-

gled, interpretable, and structured latent representations for 3D VAEs. The

new disentanglement technique based on a curated mini-batching procedure

and a new latent consistency loss was used to train the Swap Disentangled

VAE (SD-VAE) on 3D shapes of heads and bodies.

Chapter 5 addressesH2 by analysing head shapes of babies born with

craniofacial syndromes. The SD-VAE introduced in Chapter 4 is also at the

core of this work, which opens new avenues for craniofacial diagnosis and

surgical planning.

Chapter 6 focuses again onH1 , proposing a new latent disentanglement

method for generative models of head and body shapes. The newly introduced
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Local Eigenprojection Disentangled Models (LED-Models) overcome some of

the main limitations of SD-VAE and are an alternative approach particularly

useful for shape generation.

Finally, chapter 7, compares the newly introduced methods, providing

recommendations on their adoption with respect to potential applications, and

illustrates future research directions.



Chapter 2

Background

This chapter provides the necessary technical background and context for the

rest of the thesis. Not only does it present the current state of the art, but

it also details the key techniques discussed throughout the thesis. As detailed

in Sec. 1.2, the aim of the thesis is to improve the analysis and generation

of digital human shapes by improving latent disentanglement in GDL-based

data-driven models. Therefore, Sec. 2.1 de�nes the shape representation used

throughout this thesis, while Sec. 2.2 focuses on popular Statistical Shape

Models (SSMs) for shape analysis and generation, Sec. 2.3 on GDL, Sec. 2.4

on latent disentanglement, and Sec. 2.5 on spectral geometry concepts widely

adopted in the following chapters. Note that this thesis also encompasses solu-

tions for medical applications. The description of medical-related background

information is provided in the relevant chapters.

2.1 Shape Representation

In computer graphics and vision, three-dimensional shapes have multiple po-

tential representations. Explicit representations such as voxelizations, point-

clouds, and meshes are currently the most popular. Voxel-based representa-

tions (Fig. 2.1, left) are a discrete grid in the Euclidean space where each

Cartesian coordinate identi�es a unique point in the space, a voxel. To each

voxel is assigned a value that de�nes whether it is part of the object or of

the background. In other words, voxels are three-dimensional pixels and vox-
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Figure 2.1: Explicit shape representations. The same head is here represented with
a voxelisation containing 3 million voxels in a 2563 voxel grid, with a 2 thousand
points point cloud, and with a 2 thousand vertices mesh.

elized objects are three-dimensional binary images. For this reason, voxel

representations are very suitable to be processed by traditional neural network

architectures whose operations, layers and metrics are the same of those used

for images. Despite the many e�orts to increase their resolution [71, 138, 204],

voxelizations are still an ine�cient volume representation because most of the

important information should be captured on the surface and many voxels

of the grid are then useless. For this reason, this thesis focuses on shapes

represented as point clouds and especially as meshes.

Point clouds (Fig. 2.1,centre) are made of a set of three dimensional point

coordinates that sample the surface of an object. With respect to voxeliza-

tions they are much more memory e�cient, because points represent neither

the inside nor the outside of the object, but only the boundary between these

two regions: the surface. Thus, the reduced memory footprint eases com-

putations, favours deeper neural network architectures, and results in higher

quality shapes. Although this representation can o�er increased resolution,

the density/sparsity of the points becomes their main limitation.

Meshes (Fig. 2.1,right ) are a discretization of the boundary surface of

shapes represented by two-dimensional Riemannian manifolds embedded into

the 3D Euclidean space (R3) [26]. An n-dimensional Riemannian manifold can
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be intuitively de�ned as a smooth (i.e., di�erentiable) multidimensional curved

surface that is locally Euclidean, such that a small neighbourhood around any

point on the manifold is di�eomorphic to an open subset of ann-dimensional

Euclidean space {where di�eomorphic indicates that there is a continuously

di�erentiable mapping between the two spaces whose inverse is also contin-

uously di�erentiable [27]. To construct meshes, manifolds are discretized by

samplingN points (X 2 RN � 3) that act as the vertices of the graph that gets

constructed upon these points. The edges of this graph (E 2 N" � 2) represent

the local connectivity of the manifold, telling whether two points belong to a

neighbourhood or not. However, this discretization does not correctly capture

the geometry of the underlying continuous manifold. A geometrically consis-

tent discretization can be obtained by adding face information. Representing

faces as triangles (F 2 N� � 3), manifold triangle meshes are obtained. In this

thesis, the manifold triangle meshes used to represent 3D shapes and construct

the GDL-based SSMs have a �xed topology. By �xing the topology, all meshes

M = f X ; E; F g share the same edges and faces. Therefore, they di�er from

one another only by the position of their verticesX , which are assumed to be

consistently aligned, scaled, and with point-wise correspondences with respect

to a prede�ned template mesh.

Recently, also neural implicit shape [140, 163, 139] and neural radiance

�elds [142, 145] representations have become increasingly popular. How-

ever, these representations are not compatible with most traditional computer

graphics techniques (e.g., rendering, physical simulation, animation, etc.) and

they are often further post-processed to be converted into an explicit shape

representations.



2.2. Statistical Shape Models 31

2.2 Statistical Shape Models

Models for analysing and generating 3D shapes have been extensively re-

searched in the computer graphics, computer vision, and medical imaging com-

munities. When these models operate on human shapes (e.g., human organs,

skeletal structures, heads, bodies, etc.) they are usually referred to as Statisti-

cal Shape Models (SSMs), which are models compactly describing collections

of semantically similar objects in terms of variations from a mean shape [5].

The core idea of these models is to learn a mapping between 3D shapes and

low-dimensional vectors. Once the mapping is established, shapes can be rep-

resented by small vectors and, vice versa, vectors can be transformed into 3D

shapes. SSMs underpin anatomical cohort data analysis as they can provide

compact and highly-discriminative encoding for a large set of shapes. This en-

coding produces feature vectors that are capable of capturing shape variations

and that are well suited for the application of Machine Learning (ML) meth-

ods for classi�cation, clustering, or for the identi�cation of hidden structures

and patterns in the shape data [5]. An appealing feature of SSMs is that they

have generative powers. Not only they can create new shapes with weighted

combinations of the shape instances that were used to create the model [5], but

{under certain assumptions{ they can also become proper generative models.

In fact, when the space of low-dimensional vectors representing the 3D shapes

is associated to a probability distribution that measures the likelihood that

a realistic 3D shape is represented by a particular vector, the SSM is also a

generative model [53].

Blendshapes are a type of SSM that is still widely adopted for character

animation or as consumer-level avatar design tool. By linearly interpolating

between a prede�ned set of artistically created shapes, the blend-weights can

be easily interpreted [111]. However, to compensate for the limited 
exibility

and diversity of these models, a large number of shapes are required. This

makes the models very large and only a limited number of shapes can be used

in most practical applications [72].
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An alternative approach capable of o�ering more 
exibility is to build

models using PCA. These models are always built with 3D shapes that are

registered (aligned) together and are in dense point correspondence. This al-

lows the generation of meaningful and morphologically realistic shapes as linear

combinations of training data. With the correct assumptions (see Sec. 2.2.1),

they can also be regarded as generative models [196, 21, 53]. This tech-

nique was pioneered by [21] and further developed and adopted by many re-

searchers [53]. Recently, [168, 167] combined multiple SSMs to create the �rst

combined, large-scale, full-head morphable model. In particular, the Universal

Head Model (Uhm) [168] combines the Large-Scale Face Model (Lsfm ) [22],

which was built with face scans from 10; 000 subjects, with theLyhm head

model [47]. In [167] it was extended by adding a detailed ear model, eye

and eye region models, as well as basic models for mouth, teeth, tongue and

the inner mouth cavity. PCA-based models and blendshapes are often com-

bined. For instance,Smpl [125] learns linear PCA models of male and female

body shapes from approximately 2; 000 scans per gender, and subsequently

uses the resulting principal components as body shape blendshapes capable

of e�ciently controlling the identity of a subject. The same approach is used

also by Star [158], which not only creates more realistic pose deformations

than [125], but it also leverages 10; 000 additional scans to improve the gen-

eralisation capabilities of the model. Interestingly, methods like [151] and [59]

developed PCA-like solutions relying on optimisation procedures and enforcing

sparsity to achieve local control over head shape attributes. However, these

SSMs are not generative models as they do not make any assumptions on the

latent distribution.

The advent of geometric deep learning (Sec. 2.3) techniques brought a

new set of operators making possible the creation of neural network architec-

tures capable of processing 3D data such as point-clouds and meshes. [174]

introduced the �rst VAE for the generation of head meshes. In its comparison

against PCA, the VAE model used signi�cantly fewer parameters and exhibited
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superior performance in generalisation, interpolation, and reconstruction. This

pioneering work was followed by many other autoencoders which di�ered from

one another mostly by their application domain and the mesh operators used

in their architecture [121, 61, 215, 225, 69, 48, 192, 25]. These mesh operators

were also used for generative models based on GAN architectures [157, 39],

but they appear to be less frequent than their VAE counterparts. Most GAN

architectures operate in the image domain by representing 3D shapes in a UV

space [144, 112]. GAN models are generally able to generate more detailed

and realistic 3D shapes than autoencoders at the cost of being more unstable

and di�cult to train.

It is worth mentioning two additional types of models that recently be-

come popular in the image domain and that are staring to be adopted also as

SSMs: transformer networks and di�usion models. For 3D shapes, multiple

transformer architectures have been proposed [119, 118, 153, 91, 34]. Partic-

ularly relevant is the transformer-based AE operating on faces with arbitrary

topologies and resolutions proposed in [34]. Despite being more computation-

ally demanding, this architecture could be considered an alternative to the

GDL-based models widely adopted throughout this thesis. On the contrary,

di�usion models {which can also leverage transformer architectures [153, 91]{

can not trivially replace the proposed models because the iterative denois-

ing procedure makes them unsuitable for interactive shape generation and the

high-dimensional latent space (retaining instead of reducing the input domain

dimensionality) can not be used for shape analysis.

Before formally introducing the GDL operators making possible the cre-

ation of DL models for 3D shapes, the technical background necessary to

understand how PCA, VAEs, and GANs operate is described in Sec. 2.2.1,

Sec. 2.2.2, and Sec. 2.2.3 respectively.
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2.2.1 Principal Component Analysis

Let v i 2 R3N be the 
attened vertex coordinates (X i 2 RN � 3) of one of theM

training shapes, andV = [ vT
1 ; : : : ; vT

M ]T 2 RM � 3N the matrix containing all

the training data. In addition, let C be the data matrix obtained fromV after

centring eachv i by subtracting from each row ofV the column-wise mean

vector v. C can then be standardised dividing the rows by the column-wise

standard deviation vectorev. To compute the principal components, �rstly, the

covariance matrixCT C is eigendecomposed. Then, thed eigenvectors with the

highest eigenvalues are selected as the principal components. Alternatively, the

principal components can also be obtained by computing the Singular Value

Decomposition (SVD) ofC because its right singular vectors are equivalent to

the eigenvectors ofCT C and the singular values are equal to the square-root

of the eigenvalues. Regardless of the technique used to compute them, the

principal components are the vectors explaining most of the variance in the

data and they can be used to compress new data or even to e�ciently create

new shapes as linear combinations of training shapes. In fact, the 
attened

vertex coordinates of a new shape can be obtained as:

vnew = v + Ew

where E 2 R3N � d is the matrix containing all the principal components and

w 2 Rd are the shape parameters (also known as latent variables in DL mod-

els). If C was standardised,Ew also needs to be multiplied byev. Interestingly,

the shape parameters (w) of head shapes, follow a multivariate normal distri-

bution, which can be directly deduced from the eigenvalues corresponding to

E [21, 53]. This enables the use of PCA as a generative model.

Note that PCA-based models are global models. Therefore, to o�er local

control, a separate model for each region needs to be created. As it can be ob-

served in Fig. 2.2, the main issue of naive per-part methods, such as the bundle

of PCA models, is that shape attributes are independently generated. Even

though this makes the di�erent attributes fully disentangled between each oth-
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ers, signi�cant surface discontinuities appear during the generation procedure.

To overcome this issue, [21] blended the di�erent regions at their borders and,

more recently, [72] leveraged a constrained optimisation to generate new faces

and interactively sculpt them.

Figure 2.2: Random samples generated by a bundle of PCA models trained each
on a di�erent shape attribute.
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2.2.2 Variational Autoencoders

Variational Autoencoders are built as probabilistic encoder-decoder pairs pa-

rameterised by two separate neural networks (Fig. 2.3). The probabilistic

encoder is de�ned as a variational distributionq� (zjX ) that approximates the

intractable model posterior. It predicts the mean� and standard deviation�

of a Gaussian distribution over the possiblez values from whichX could have

been generated. The probabilistic decoderp� (X jz) describes the distribution

of the decoded variable given the encoded one. Similarly to the encoder, it

predicts a mean and a standard deviation of a Gaussian distribution. However,

in practice, an identity covariance is assumed and the output of the decoder

is just the mean, which can be regarded as the actual predicted data-point.

During the generation process, a latent vectorz is sampled from a Gaussian

prior distribution p(z) � N (0; I ) and an output shape is generated by the

probabilistic decoder. Since the decoder is used as a generative model, it is

also referred to as generator. Following this convention, the VAE architecture

is de�ned as a pair of non-linear functionsf E; Gg, where E : X ! Z maps

from the vertex embedding domainX to the latent distribution domain Z ,

and G : Z ! X vice versa (Fig. 2.3).� and � are the learnable parameters of

these probabilistic functions.

Figure 2.3: VAE architecture. Given an input shape X , the probabilistic encoderE
predicts � and � , which parameterise the variational distribution q� (zjX ). A sample
from this distribution, z, is then fed to the generator G, which e�ectively tries to
reconstruct the input shape. During training, a reconstruction loss encouragesX 0

to match X and a Kullback{Leibler (KL) divergence pushes q� (zjX ) towards p(z).
After training, new shapes can be generated samplingz from p(z) and feeding it to
the generator G.
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E and G are jointly trained by maximising the variational lower bound,

which is also known as Evidence Lower Bound (ELBO). Intuitively, the training

objective for VAEs is to obtain a variational distribution q� (zjX ) capable of

properly approximating the intractable model posteriorp(zjX ). The similarity

of these two distributions is assessed using the KL divergence, which measures

the expectation on the information di�erence between the distributions (see

Technical Note 2.1) and it can be written as:

DKL
�
q� (zjX )jjp(zjX )

�
= �

Z
q� (zjX ) log

� p(zjX )
q� (zjX )

�
dz: (2.1)

Knowing that the KL divergence is always non-negative (i.e.,DKL (�; �) � 0),

it is possible to derive the following:

log p(X ) � Ez� q� (zjX )

�
log p� (X jz)

�
� DKL

�
q� (zjX )jjp(z)

�
(2.2)

The right hand side of this equation is the ELBO and, when maximised, it also

maximises the log probability of the data.Ez� q� (zjX )

�
log p� (X jz)

�
is an expec-

tation term that is approximated with Monte Carlo Sampling (see Technical

Note 2.2). This term is also a reconstruction term measuring the likelihood

of the data reconstructed by the generatorG, while the KL divergence in the

ELBO loss acts as a regulariser pushing the variational distribution towards

the prior latent distribution. When the latent prior and variational distribu-

tion are approximated by Gaussian distributions, this KL divergence can be

explicitly formulated as L KL = DKL
�
q� (zjX )jjp(z)

�
= 1

2

�
� 2+ � 2 � log(� 2) � 1

�
.

The full derivation of the ELBO loss is available in [154].

Note that during training z needs to be sampled from the variational

distribution, but directly sampling it as z � q� (zjX ) � N (� ; � ) is not pos-

sible as the sampling operation is not di�erentiable and gradients could not

be backpropagated throughE. Therefore, a reparametrisation trick needs to

be used to di�erentiably samplez from the variational distribution. Being

� � N (0; I ) a random vector drawn from a Gaussian distribution, then the
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sampling operation can be implemented asz = � + �� , where [� ; � ] = E(X ).

Also, to balance the contributions of the two terms in Eq. 2.2 a weight-

ing constant is often added to the KL-divergence. Since manually selecting

this constant can be di�cult, recent methods de�ned iteration dependants

weights [10] or learned how to weight the two terms during training [17, 46].

Technical Note 2.1. Kullback{Leibler Divergence

As previously mentioned, the KL-divergence measures the expectation

on the information di�erence between two distributions. In information

theory, the level of information of a random variablez distributed ac-

cording to p(z) can be measured asI p(z) = � log p(z). As it can be

observed from this formula, the higher the probability of an event, the

lower its information content is. As highlighted in [154], this can be

intuitively explained because if someone states something obvious (i.e.,

highly probable), than the statement is not informative.

Therefore, given two distributionsp(z) and q(z), the expectation on their

information di�erence can be written as:

DKL
�
q(z)jjp(z)

�
= Ez� q(z)

�
� I

�
=

Z �
I p(z) � I q(z)

�
q(z)dz

=
Z

q(z) log
q(z)
p(z)

dz:

Thanks to the logarithm properties, it can also be written like in Eq. 2.1

as:

DKL
�
q(z)jjp(z)

�
= �

Z
q(z) log

p(z)
q(z)

dz: (2.3)

Interestingly, the KL-divergence is also called relative entropy, as it

can be formulated asDKL
�
q(z)jjp(z)

�
= H

�
q(z); p(z)

�
� H

�
q(z)

�
, with

H
�
q(z)

�
= �

R
log q(z)dz being the entropy ofq(z), and H

�
q(z); p(z)

�
=

�
R

q(z) log p(z)dz being the cross-entropy of the two distributions. This

can be seen as the amount of information lost when the the distribution

p(z) approximatesq(z) [31].
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Technical Note 2.2. Monte Carlo Sampling

Monte Carlo methods can be used to solve stochastic as well as deter-

ministic, but intractable, problems. Interestingly, this technique was

developed in statistical physics during the development of the atomic

bomb [146]. In this thesis, it is mostly used to compute expectations

within loss functions. Like reported in [109], when a sum or an inte-

gral s cannot be computed exactly, they are usually approximated with

Monte Carlo sampling. Being

s = Ep[f (x)] =
X

x

p(x)f (x) (if p(x) is a probability distribution)

=
Z

p(x)f (x)dx (if p(x) is a probability density)

its value can be approximated by drawingn samples fromp and then

computing the empirical average

ŝn =
1
n

nX

i =1

f (x(i )):

Following the law of large numbers, if the samples are independent

and identically distributed, and the variance of the individual terms

Var[f (x(i ))] is bounded, thenŝn converges tos for n going to in�nity.

The uncertainty in the Monte Carlo approximation can be computed as:

Var[ŝn ] =
1
n2

nX

i =1

Var[f (x(i ))] =
Var[f (x)]

n
:

2.2.3 Generative Adversarial Networks

To date, GANs (Fig. 2.4) are one of the most popular generative models as they

demonstrated incredible results especially in the image domain [94, 95, 93, 92].

Although many di�erent 
avours have been proposed [135, 7, 73, 94, 225], they

are all built following the same underlying principle �rstly introduced in [70].

In fact, GANs are built as a pair of neural networks trained while competing
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Figure 2.4: GAN architecture. Given a random vector z sampled from a Gaussian
distribution p(z), the generator G, generates a sampleX 0. While the discriminator
D learns to distinguish real data X from generated samplesX 0, the generator learns
to create progressively better shapes. Note that the shape here used to represent
X 0 was created for the purpose of illustrating the concept of an unrealistic human
head shape. In early stages of training, output meshes are noisy and with self-
intersections, while in late stages it should be impossible to distinguish real from
generated samples.

against each other in a zero-sum game. The generator networkG takes a latent

vector z, usually sampled from an isotropic unit Gaussian, and generates a

new sample asX 0 = G(z). Its adversary, usually called discriminatorD,

attempts to distinguish the generated samples from the training data. During

training, each player attempts to maximise its own payo� function: v(G; D)

for the discriminator, and � v(G; D) for the generator. Therefore, the training

objective can be written as:

arg min
G

max
D

v(G; D):

With the default payo� choice, it becomes:

arg min
G

max
D

EX � pdata

�
log D(X )

�
+ Ez� p(z)

�
log

�
1 � D(G(z))

��
; (2.4)

which is e�ectively a binary cross-entropy loss based on the assumption that,

during the discrimination, real data are labelled with a value of 1, and gener-

ated samples with a value of 0. Note that, while the discriminator has con-

trol over both terms, the generator has control over the second term only.
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With the objective in Eq. 2.4, while the discriminator tries to learn how

to distinguish real from generated samples by maximising the entire equa-

tion, the generator attempts to fool the discriminator by learning to minimise

Ez� p(z)

�
log

�
1 � D(G(z))

��
. When convergence is reached, generated samples

are indistinguishable from real ones and the discriminator outputs 1=2 every-

where as it is incapable of distinguishing what is real and what is not.

Even though GANs are intuitive and apparently easy to train, in practice

convergence is not guaranteed as they are unstable and su�er from vanishing

gradients and mode collapse (i.e., the generator generates only one or a small

set of samples). Due to the training di�culties, this thesis focuses mostly

on methods for VAE architectures. Nevertheless, Ch. 6 introduces a latent

disentanglement technique that is also suitable for GAN-based SSMs.

2.3 Geometric Deep Learning

As mentioned in Sec. 2.1, the triplet made of vertex positions, edges and

faces (X ; E; F ) is referred to as triangular mesh and is a discretisation of a

Riemannian manifold embedded inR3. The non-Euclidean nature of such data

implies that there are no familiar properties such as global parameterization,

a common system of coordinates, a vector space structure, or shift invariance.

For this reason, basic operations that are taken for granted in the Euclidean

case (e.g. convolution, pooling and unpooling) are not well de�ned on non-

Euclidean domains [28].

Geometric Deep Learning is an umbrella term for the emerging research

�eld that aims at generalising DL to non-Euclidean domains such as graphs,

manifolds, point clouds and meshes. Convolutions suited for these domains

are currently the most researched operators in the �eld. There are two pos-

sible approaches: leverage the convolution theorem and perform convolutions

in the spectral domain, or leverage spatial properties of the 3D shapes to per-

form convolutions in the spatial domain. The �rst formulation of spectral

convolution [29] was very computationally expensive and it was also explic-
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itly leveraging the graph Laplacian operator (Sec. 2.5). Therefore, the Fourier

basis computed from the Laplacian were domain dependant and convolutions

could not be generalised across di�erent topologies. To reduce the risk of

over�tting, the number of learnable parameters was reduced by restricting the

amount of spectral multipliers to those corresponding to localised �lters. In-

stead of explicitly operating in the spectral domain with spectral multipliers,

[49] proposed to use a Chebyshev polynomial expansion to e�ciently repre-

sent localised �lters and [99] proposed a more simpli�ed version of it. Both

�lters can be interpreted as operating in the spatial domain and are capable of

dealing with di�erent topologies. Convolutions explicitly created to operate in

the spatial domain have to deal with the lack of shift-invariance (each patch

operator would depend on its position), but are able to generalise to di�erent

topologies. Geodesic methods take advantage of the manifold property of be-

ing locally Euclidean and de�ne convolutional kernels on local polar systems of

coordinates in the tangent space [137]. Anisotropic methods on the other hand

still take advantage of local chartings, but they use �lters similar to isotropic

heat kernels which have the same e�ects in all directions. A hybrid approach

was also proposed in [143], where Gaussian kernels were learned on local pseudo

coordinate systems de�ned for each point. Alternatively, rather than relying

on prede�ned static coordinates, [200] proposed to dynamically compute corre-

spondences from features learned by the network. Another popular approach to

perform convolutions on 3D data is to leverage PointNet [171, 172] and its vari-

ants. These operators treat points independently and subsequently aggregate

features by leveraging symmetric functions to obtain permutation invariance.

However, these point-cloud-based convolutions cannot capture local features

because they neglect the geometric relationships among points [207]. This

drawback can be overcome by dynamically aggregating edge features of neigh-

bouring points [207] or by approximating geodesic coordinates in the tangent

space and representing the surface as an oriented point-cloud [191]. Finally,

a recent approach was proposed for problems with a �xed topology. Despite
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this considerable limitation, [69] managed to achieve state of the art results

with computationally e�cient and very intuitive operators arbitrarily de�ned

on the surface of meshes.

Before providing technical details on the operators most used in this thesis

(Sec. 2.3.1 Sec. 2.3.2 and Sec. 2.3.3), it is worth mentioning that GDL allowed

the creation of better performing and non-linear generative models [174]. In

addition, it revolutionised shape analysis. In fact, the extraction of shape

descriptor features was previously a necessary pre-processing step to train other

ML models. Now, end-to-end GDL-models can be directly used to analyse

shape data [78].

2.3.1 Feature Steered Graph Convolutions

The Feature-steered graph convolutions de�ned in [200] dynamically assign

�lter weights to k-ring neighbourhoods according to the features learned by

the network. In particular, given a generic feature vector �eld where each

vertex i has a feature vectorx i , it is possible to de�ne the output of the

convolutional operator as

y i = b +
1

jN i j

X

j 2N i

MX

m=1

qm (x i ; x j )W mx j (2.5)

where b is a learnable bias,qm (x i ; x j ) is a translation-invariant assignment

operator that, using a soft-max over a linear transformation of the local feature

vectors, learns to dynamically assignx j to the m-th learnable weight matrix

W m , and N i is the neighbour of thei -th vertex with cardinality jN i j.

2.3.2 Spiral++ Convolutions

In this thesis, the most used convolutional operators are the Spiral++ con-

volutions introduced in [69]. Although this is an arbitrary choice and other

operators could be used, Spiral++ convolutions are intuitive and particularly

well suited for SSMs as they are designed to e�ciently operate on datasets of

meshes in dense point correspondence. The creation of spiral sequences is at
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the core of this operator. Spirals are a simple yet e�ective approach to aggre-

gate neighbouring mesh vertices into ordered sequences. Given a vertex, the

spiral sequence is obtained by arbitrarily selecting one neighbour and follow-

ing a clockwise spiral until the spiral length is reached. The receptive �eld of

these convolutional operators can be expanded by dilating the spirals (i.e. not

selecting certain vertices along the sequence). Denoting byS(n; l ) the spiral

centred at vertexn with length l, the convolution at layer k is de�ned as:

x (k)
n = MLP (k)

�
k

j 2S (n;l )
x (k� 1)

j

�

wherek is the concatenation operation over the vertices in the spiralS(n; l ),

x (k)
n are the vertex features at layerk, and MLP is a multilayer perceptron.

Note that spirals are �xed during training because they are pre-computed only

once for all vertices.

2.3.3 Pooling and Un-pooling with Fixed Topologies

The pooling operators used in this thesis were �rst introduced in [174]. The

operators are precomputed during a quadric sampling procedure [65] applied

to the mean shape of the training dataM that iteratively contracts the vertex

pair with the smallest quadric error. During this procedure both a pooling

and an un-pooling sparse matrix are de�ned. In particular, the pooling matrix

Qd 2 f 0; 1gN k +1 � N k is a sparse matrix whereQd(p; q) = 1 if vertex q has been

preserved during quadric sampling andQd(p; q) = 0 otherwise. The un-pooling

matrix Qu 2 RN k � N k +1 leaves the preserved vertices unchanged by setting

Qu(q; p) = 1. Contracted vertices are expressed in barycentric coordinates

with respect to the closest preserved triangle, and then their corresponding

elements inQu are set to the barycentric weights. This makes possible to

restore the contracted vertices. These precomputed sparse matrices are matrix

multiplied with the vertex features computed by the di�erent network's layers

to achieve pooling and un-pooling.
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2.4 Latent Disentanglement

As mentioned in Sec. 1.1, with a disentangled latent representation, changes

in one latent variable a�ect only one factor of variation while being invariant

to changes in other factors. However, research on latent disentanglement often

focuses on the scenario in which only raw observations are available without

any supervision about the generative factors, and it is usually performed on

images [106, 96, 105, 55, 50, 176, 205]. The� -VAE [82] is probably the sim-

plest model used to improve disentanglement in a VAE [98]. By increasing

the weight of the KL divergence,� -VAE showed better latent disentanglement

properties at the expense of a reduced quality of the generated samples (see

Sec 2.4.1). Subsequent work, such as [106, 96], tried to overcome this limi-

tation. The Disentangled Inferred Prior VAE (DIP-VAE) [106] leverages an

additional regularisation term on the expectation of the approximate posterior

over observed data (see Sec. 2.4.2). The Factor VAE [96] encourages the latent

distribution to be factorial, and therefore independent across dimensions, by

using a latent discriminator and by adding a total correlation term in the VAE

loss function (see Sec. 2.4.3). An interesting approach to encourage latent

variables to represent prede�ned transformations was proposed in [105], where

mini-batches are created combining active and inactive transformations and

gradients in
uencing the latent are modi�ed during backpropagation. How-

ever, this method requires synthetic datasets created with known properties

that can be used during training to achieve the disentanglement. Recently,

[55] proposed a VAE in which the objective function is hierarchically decom-

posed to control the relative levels of statistical independence between groups

of variables and for individual variables in the same group. The recursive for-

mulation of the loss introduces additional terms for any variable that has to

be disentangled and works only where the factors of variation are uncorrelated

scalar variables, a requirement that hampers the applicability of the model in

real-world scenarios. Finally, the Guided-VAE [50] in its unsupervised setting

leverages a secondary decoder that learns a set of PCA bases that are used
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to guide the training over simple geometrical shapes. Nevertheless, being the

secondary decoder based on a PCA, latent variables su�er the same problems

as PCA models.

In the 3D realm, there are currently two prominent streams of research:

the one disentangling the identity from the pose or expression of digital hu-

mans [12, 11, 44, 219, 224, 193, 89, 86, 160], and the stream attempting to

disentangle parts of man-made objects [214, 149, 114, 177]. In both cases, the

proposed solutions require complex architectures. In addition, in the former

category, current state-of-the-art methods do not attempt to disentangle local

shape attributes. The latter category appears better suited for this purpose,

but the type of generated shapes is substantially di�erent because the gener-

ation of object parts needs to consider intrinsic hierarchical relationships, and

surface discontinuities are not a problem.

Like for VAEs, the research on GANs comes mostly from the imaging

domain, where good levels of control over the generation process were recently

made possible. Most of these models leverage segmentation maps [87, 110, 120],

additional attribute classi�ers [79, 185], text prompts [173], or manipulate the

latent codes and the parameter space of the pre-trained model to achieve the

desired results [93, 75, 184, 120]. While the �rst two approaches require multi-

ple inputs and additional supervision, the last two o�er limited editing 
exibil-

ity. In fact, describing the shape of human parts is a di�cult task that would

ultimately limit the diversity of the generated shapes, while the post-training

manipulation may limit the exploration of some latent regions. Only a few

methods explicitly seek disentanglement during training [4, 202]. However,

[4] is speci�cally designed for grid-structured data, like images, and [202] still

requires a pre-trained GAN and two additional networks for disentanglement.

In the 3D shapes domain, GAN disentanglement is still researched to control

subject poses and expressions [37, 157] or object parts [113]. However, they

su�er the same problems described for 3D VAEs: they have complex archi-

tectures and do not have control over the generation of local shape attributes
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characterising the identity of digital humans.

An alternative, yet related, stream of research is focused on the creation

of capsule neural networks. These networks were born in the computer vision

community with an inverse graphics objective, where images should be auto-

matically deconstructed into parts and their relationships. From their intro-

duction in the transforming autoencoders [83], multiple alternative approaches

were proposed, where the introduction of dynamic routing [182] and of Matrix

capsules with EM routing [84] are arguably the most explored alternatives.

While most capsule networks operate in the 2D domain, some 3D alternatives

were also introduced [220, 221, 210, 190]. These methods aim at �nding local

relationships between shapes and latent representations in order to improve

the local analysis and generation of shapes. However, capsules require sub-

networks which separately process di�erent parts. While several disentangling

methods for 3D shapes requiring sub-architectures may be associated to cap-

sule networks, the methods proposed in this thesis are capable of achieving the

same goal without requiring independent sub-networks. Sec. 2.4.1, Sec. 2.4.2,

and Sec. 2.4.3 introduce the most popular 
avours of VAE with a disentangled

latent representation: the� -VAE, DIP-VAE, and Factor VAE.

2.4.1 � -VAE

In short, a � -VAE [82] is a VAE trained with an increased weighting on the

KL-divergence between variational and prior distribution. In fact, the ELBO

loss that is maximised during training, and previously introduced in Eq. 2.2,

can be rewritten as:

Ez� q� (zjX )

�
log p� (X jz)

�
� � D KL

�
q� (zjX )jjp(z)

�
: (2.6)

In [82], this equation is not directly derived from the KL-divergence between

variational and posterior distribution (Sec. 2.2.2). Instead, their initial as-

sumption is that in order to train an unsupervised generative model capable

of generating new data, a suitable objective is to maximise the marginal like-
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lihood of the observed data in expectation over the whole latent distribution,

which can be formally written as:

max
�

Ez� p(z)

�
p� (X jz)

�
:

Being q� (zjX ) the inferred posterior con�guration of latent factors given an

observationX , they wish to obtain an inferred posterior capable of disentan-

gling factors of variation. This is achieved by introducing a constraint on the

inferred posterior, which is encouraged to match a prior distribution with inde-

pendent variables. The selected prior distribution is an isotropic unit Gaussian

distribution p(z) = N (0; I ), where the di�erent dimensions are independent by

construction {as a consequence of having unitary variance and zero covariance.

Considering that during training z is sampled from the inferred posterior, the

objective function can be re-written as:

max
�;�

EX � data

h
Ez� q� (zjX )

�
p� (X jz)

� i
subject to: DKL

�
q� (zjX )jjp(z)

�
< �:

Using the Lagrange multipliers, this can be easily formulated as in Eq. 2.6.

Note that when � = 1 the derivation of the � -VAE can be considered an alter-

native derivation of the ELBO loss introduced in Sec. 2.2.2. However,� -VAEs

are required to have� � 1. This is because, when the training data contain

independent factors of variation,� � 1 encourages the model to automatically

learn a disentangled latent representation without any supervision.

Although � � 1 is the most common condition reported in literature to

derive a � -VAE, it is worth considering that the magnitude of this weight is

actually in
uenced by the assumptions made in the data term. The standard

assumption, that enables the derivation of aL2 loss from the log probability

of the data (Eq. 2.2 and Eq. 2.6), is that the noise model of the data term has

a unitary covariance. If a di�erent covariance is used, the� weight needs to

be changed accordingly.
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2.4.2 Disentangled Inferred Prior VAE

As the name suggests, the DIP-VAEs [106] are VAEs achieving disentangle-

ment through the inferred prior distribution. Following the law of total proba-

bility (which is the one commonly used to explicitly compute the denominator

of the Bayes' rule), the inferred prior (or expected variational posterior) is

de�ned as:

q� (z) =
Z

q� (zjX )p(X )dX ;

wherep(X ) is the true data distribution, which is usually unknown and from

which some samples (training data) are usually available. To achieve dis-

entanglement, the inferred prior should be factorizable along its dimensions:

q� (z) =
Q

i qi (zi ). As mentioned in Sec. 2.4.1, an isotropic unit Gaussian sat-

is�es this requirement by construction. On simple datasets, a VAE with an

isotropic unit Gaussian prior p(z) = N (0; I ) can thus achieve some level of

disentanglement, but on more complex datasets more supervision is required.

Supervision can be provided by minimising a distance between the priorp(z)

and the inferred prior q� (z). Therefore, instead of maximising the ELBO loss

as in Eq. 2.2, the objective is modi�ed to consider also this additional term on

the inferred prior:

Ez� q� (zjX )

�
log p� (X jz)

�
� DKL

�
q� (zjX )jjp(z)

�
� D

�
q� (z)jjp(z)

�

The obvious metric to use to evaluateD
�
q� (z)jjp(z)

�
would be the KL di-

vergence introduced in Technical Note 2.1. Unfortunately, in this case the KL

divergence has no closed form expression and another criteria needs to be used.

The criteria proposed by [106] is based on matching the covariance of the two

distributions. The covariance of the inferred prior is de�ned as:

Covq� (z) [z] := Eq� (z)

�
(z � Eq� (z) [z])(z � Eq� (z) [z])T

�
:
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By the law of total covariance, and considering that the variational distribution

represented by the probabilistic encoderE of the VAE predicts [� ; � ] = E(X ),

the covariance of the inferred prior can be rewritten as:

Covq� (z) [z] = Ep(X )

�
Covq� (zjX ) [z]

�
+Cov p(X )

�
Eq� (zjX ) [z]

�
= Ep(X ) [� ]+Covp(X ) [� ]:

(2.7)

To match this covariance to the one of the prior, which is an isotropic unit

Gaussian, it is su�cient to compute the l2-norm between Covq� (z) [z] and the

identity matrix. As � is usually a diagonal matrix, the cross-correlations

between the latents are due to only Covp(X ) [� ]. This leads to two alternative

formulations: the DIP-VAE-I, which considers only Covp(X ) [� ], and the DIP-

VAE-II, which considers the full Covq� (z) [z] in Eq. 2.7. Therefore, the metrics

used to evaluate the similarity between prior and inferred prior can be written

as:

D
�
q� (z)jjp(z)

�
= � od

X

i 6= j

�
Covp(X ) [� ]

� 2

ij
+ � d

X

i

� �
Covp(X ) [� ]

�
ii

� 1
� 2

; (2.8)

D
�
q� (z)jjp(z)

�
= � od

X

i 6= j

�
Covq� (z) [z]

� 2

ij
+ � d

X

i

� �
Covq� (z) [z]

�
ii

� 1
� 2

; (2.9)

where Eq. 2.8 is the metric used for DIP-VAE-I and Eq. 2.9 the one used for

DIP-VAE-II. Both metrics separately evaluate the distance of the elements

on the diagonal and o� the diagonal, which are weighted with� d and � od

respectively.

2.4.3 Factor VAE

The Factor VAE is another variant of the traditional VAE previously described

in Sec. 2.2.2. This model achieves latent disentanglement by encouraging

the distribution of latent representations to be factorial and hence indepen-

dent across dimensions [96]. Similarly to the DIP-VAEs, disentanglement is

achieved with the introduction of an additional term in the ELBO loss func-
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tion, which can be rewritten as:

Ez� q� (zjX )

�
log p� (X jz)

�
� DKL

�
q� (zjX )jjp(z)

�
� 
D KL

�
q(z)jj �q(z)

�
; (2.10)

where 
 is a weighting term,q(z) = Epdata (X ) [q� (zjX )] = 1
N

P N
n=1 q� (zjX (n)) is

the distribution of the latent representations for the entire training set, and

�q(z) :=
Q

i q(zi ) is a factorial distribution. The additional KL divergence in

Eq. 2.10 (rightmost term) is called Total Correlation (TC) and, unfortunately,

it is intractable because of the large number of components in the two distribu-

tions. Based on the observation that it is possible to sample both distributions,

their KL divergence can be computed using the density ratio trick, which uses a

discriminator D to approximate the density ratio arising in the KL divergence.

Knowing that q(z) can be sampled by choosing a data-pointX (n) uniformly at

random and then samplingq� (zjX ), while �q(z) by sampling a mini-batch from

q(z) and randomly permuting across the batch for each latent dimension , it

is possible to formulate the TC as:

TC(z) = DKL
�
q(z)jj �q(z)

�
= Eq(z)

h
log

q(z)
�q(z)

i
� Eq(z)

h
log

D(z)
1 � D(z0)

i
; (2.11)

wherez0 are the vectors in the mini-batches of permuted latents, thus sampled

from �q(z).

The discriminator is trained to classify between samples ofq(z) and �q(z).

VAE and discriminator are trained simultaneously by maximising Eq. 2.10

with the TC approximation (Eq. 2.11).

2.5 Spectral Geometry

Spectral mesh processing has played an essential role in shape indexing,

sequencing, segmentation, parametrisation, correspondence, and compres-

sion [218]. Spectral methods usually leverage the properties of the eigen-

structures of operators such as the mesh Laplacian. Even though there is

no unique de�nition for this linear operator, it can be classi�ed either as ge-
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ometric or combinatorial. Geometric Laplacians are a discretisation of the

continuous Laplace-Beltrami operator [36] and, as their name suggests, they

encode geometric information. Their eigenvalues are robust to changes in mesh

connectivity and are often used as shape descriptors[175, 64]. Since they are

isometry-invariant, they are used also in VAEs for identity and pose disentan-

glement [12, 11]. However, being geometry dependant, the Laplace-Beltrami

operator and its eigendecomposition have to be precomputed for every mesh

in the dataset. On the other hand, combinatorial Laplacians treat a mesh as

a graph and are entirely de�ned by the mesh topology. For these operators,

the eigenvectors can be considered as Fourier bases and the eigenprojections

are equivalent to a Fourier transformation [186] whose result is often used

as a shape descriptor. If all shapes in a dataset share the same topology, the

combinatorial Laplacian and its eigendecomposition need to be computed only

once. For this reason, multiple graph and mesh convolutions [29, 49] as well as

some data augmentation techniques [61] and smoothing losses [62] are based

on combinatorial Laplacian formulations.

Both categories of Laplacian are built following the same underlying prin-

ciple. In fact, a mesh Laplacian operatorL locally takes the di�erence between

the value of a functionf at a vertex and a weighted average of the function's

values at the vertices of the one-ring neighbours. This can be formally written

as

(Lf )n = b� 1
n

X

m2N n

wmn (f m � f n );

where wmn are symmetric edge weights, andbn is a constant. Note that this

is a local formulation referred to then-th verthex, the global formulation can

be expressed using the following matrix notation:

Lf = B � 1Wf ; (2.12)

whereB is a diagonal matrix whose entries are thebn constants, andW is a

symmetric matrix with diagonal entries equal to
P

m2N n
wmn and o� diagonal



2.5. Spectral Geometry 53

entries equal to� wmn . It can be shown that the eigenvectors ofL are mutually

orthogonal [218], a desirable property in many applications.

Since SSMs are built with datasets of shapes sharing the same topology,

this thesis relies on combinatorial Laplacians. In particular two formulations

are used: the Kircho� and the Tutte Laplacians. The Kircho� Laplacian is

also commonly called graph Laplacian and it is built as the di�erence between

the degree matrixD 2 NN � N and the adjacency matrixA 2 NN � N . Using the

notation previously introduced in Sec. 2.1, whereE are the edges of a mesh

with N vertices, the adjacency matrix is de�ned as

Amn =

8
><

>:

1 if (m; n) 2 E;

0 otherwise;

and the degree matrixD as a diagonal matrix whereDmm =
P

m Amn = jN m j.

Therefore, the Kircho� Laplacian can be formally computed as

K = D � A : (2.13)

Note that the formulation in Eq. 2.13 is equivalent to the one in Eq. 2.12 when

the diagonal elements ofB are bn = 1 and W = D � A = K .

The Tutte Laplacian, which is the other operator frequently used in this

thesis, can be derived as:

T = D � 1K = D � 1(D � A ) = I � D � 1A : (2.14)

In this case, the the relation between Eq. 2.14 and Eq. 2.12 is more apparent

as B = D and W = K .
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2.6 An Overall Perspective on the Topics
This chapter has provided an overview of the background information and rel-

evant literature that are necessary to fully understand the methods detailed

in the following chapters. Among the di�erent shape representations intro-

duced in Sec. 2.1, meshes are the preferred ones to train any of the models

proposed throughout this thesis. The most common SSMs are undoubtedly

VAEs (Sec. 2.2.2), but in Chapter 6 two di�erent 
avours of GANs (Sec. 2.2.3)

are also proposed. All the architectures leverage the GDL operators described

in Sec. 2.3. In particular, the same pooling and unpooling operators pre-

sented in Sec. 2.3.3 are always used, while the feature steered graph convolu-

tion (Sec. 2.3.1) is used in Ch. 3 and the spiral++ convolution in Ch. 4, Ch. 5,

and Ch. 6. The latent disentanglement methods presented in Sec. 2.4 are

mostly used to benchmark the disentanglement performances of the methods

proposed in Ch. 4 and Ch. 6, while the spectral geometry operators introduced

in Ch. 2.5 are leveraged either to de�ne smoothness losses or to propose new

data augmentation techniques across the di�erent chapters.



Chapter 3

Intraoperative Shape

Completion

This chapter describes how a GDL-based generative model can predict the

complete surface of a liver, given a partial point cloud of the organ obtained

during a surgical laparoscopic procedure. The core of the proposed method

is a VAE trained to learn a latent space for complete shapes of the liver. At

inference time, the generative part of the model acts as a prior embedded

in an optimisation procedure where the latent representation is iteratively

updated to generate a shape that matches the intraoperative partial point

cloud. The e�ect of this optimisation is a progressive non-rigid deformation

of the initially generated shape. In this case, some level of disentanglement is

imposed by construction as, during the optimisation, latent shape properties

are separately optimised from rotations and translations. Also, to compensate

for the limited size of the liver dataset, a new data augmentation technique

that randomly perturbs shapes in their frequency domain is introduced.

A paper on this work has been published as [61]: Simone Foti, Bongjin

Koo, Thomas Dowrick, Jo~ao Ramalhinho, Moustafa Allam, Brian David-

son, Danail Stoyanov, Matthew J. Clarkson. Intraoperative Liver Sur-

face Completion with Graph Convolutional VAE . Uncertainty for

Safe Utilization of Machine Learning in Medical Imaging, and Graphs in

Biomedical Image Analysis, pp. 198-207. Springer, Cham, 2020. The �-
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nal authenticated version is available online athttps://doi.org/10.1007/

978-3-030-60365-6_19.

This Chapter starts by providing background information on Computer

Assisted and Minimally Invasive Surgery (Sec. 3.1.1) and subsequently intro-

duces the proposed method in the context of computer assisted procedures

of the liver (Sec. 3.1.2). Then, the method is formally described (Sec. 3.2),

experiments and results are presented (Sec. 3.3), and discussed (Sec. 3.4).

3.1 Introduction

3.1.1 Computer Assisted and Minimally Invasive

Surgery

Computer Assisted Surgery (CAS), also known as Computer Aided Surgery

or Computer Assisted Intervention, encompasses computer science methods

such as AR, ML, multimodal imaging, and robotics to augment clinicians and

provide better clinical outcomes [188]. Until recently, these terms were often

confused with Image Guided Surgery and could have di�erent interpretations.

Following [67], who provided an o�cial de�nition by seeking consensus among

experts of the �eld, CAS can be de�ned as \the broad use of information

technology frameworks to enhance physicians' skills and augment senses (e.g.,

image-guided surgery), cognition (e.g., deep learning, machine learning), and

execution (e.g., mechatronic, imaging and surgical robotics) with the aim of

providing more precise and safer procedures".

CAS made its appearance in 1895, eight days after Roentgen's �rst paper

on X-rays, when it was used to remove a needle from a patient's hand. In

the past century it was mostly used for neurosurgery, because the skull can

guarantee a rigid and stable frame of reference, but its basic principles can

be applied to any part of the body. In fact, CAS has current applications in

neurosurgery, orthopaedics, plastic surgery, cardiology, as well as abdominal,

kidney, liver, and prostate interventions [42]. Nowadays, in most of these

applications there is a drive towards replacing open surgical procedures with
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Minimally Invasive Surgery (MIS).

MIS is performed through small incisions in order to reduce surgical

trauma and morbidity. When MIS procedures are performed in the abdomi-

nal or pelvic cavities, the abdomen is insu�ated with gas to create a working

volume (pneumoperitoneum) into which an endoscopic camera (laparoscope)

and the surgical instruments can be inserted [133]. Despite the many bene�ts

of laparoscopic procedures, they introduce an additional level of complexity

for surgeons. Hence, CAS techniques help and guide surgeons during the in-

tervention. Many CAS approaches involve the use of AR, a variation of VR

that has been proposed as a method of guidance in which the user sees the

real world with virtual objects superimposed upon or composited with the real

world [13]. The introduction of AR in MIS alleviates the loss of direct vision

and tactile feedback that arises in this type of interventions. Laparoscopic

AR provides intraoperative guidance with a rapid identi�cation of subsurface

targets (e.g., tumours, infections, foreign bodies) and critical structures (e.g.,

vessels, nerves, other organs). Even though AR was successfully deployed in

surgical procedures where organs and tissues can be approximated with rigid

structures (e.g. in neurosurgery), augmenting the laparoscopic scene of ab-

dominal surgeries remains an open challenge because of the non-rigidity of the

tissues and organs involved. This problem is accentuated especially in MIS of

the liver, one of the biggest and most deformable organs [19]. From 2003, a

few surgical procedures deploying these technique have been reported in liter-

ature. In particular, [103] performed 20 laparoscopic interventions on spleen,

stomach, gallbladder or thoracic cavity and [197, 187, 194, 148] independently

performed urological procedures on multiple patients. In more recent years, a

robotic AR-assisted liver surgery and a pre-clinical evaluation of AR laparo-

scopic liver resection have been reported in literature [165, 108]. To date, most

AR laparoscopic procedures are still considered research works where the aug-

mentation is still performed manually or semi-automatically. In addition, the

few cases that tried to deal with tissues deformation used only local compen-
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sations, thus limiting the accuracy of the augmentations and the validation of

the methods [19].

3.1.2 Shape Completion for Computer Assisted Liver

Surgery

As mentioned in Sec. 3.1.1, the loss of direct vision and tactile feedback in

laparoscopic procedures introduces an additional level of complexity for sur-

geons. AR is a promising approach to alleviate these limitations and provide

guidance during the procedure. However, it remains an open challenge for la-

paroscopic surgery of the liver, which is one of the largest and most deformable

organs. AR is usually achieved by registering a preoperative 3D model to the

intraoperative laparoscopic view. Clinically available state-of-the-art commer-

cial systems use manual point-based rigid registration [170], while recent re-

search works focus on either rigid [127, 178] or deformable [30, 56, 104, 161]

registration techniques requiring di�erent amounts of manual interactions and

computations on the preoperative data. In contrast, the framework detailed

in this Chapter formulates the deformable registration as a shape completion

problem that does not rely on patient speci�c preoperative computations.

Even though the underlying techniques are di�erent, the common appli-

cation and presence of an optimisation procedure make the proposed method

similar to registration. Since the proposed method has the potential to become

a precursor to a new approach for registration, in Sec. 3.3 it is directly com-

pared with a rigid registration algorithm (Go-ICP [213]) that aligns two point

clouds. This algorithm was successfully used for laparoscopic liver applications

in [127], where the preoperative model was registered onto the intraoperative

point cloud obtained using an unsupervised neural network for depth estima-

tion. The proposed method is similar, but relying on a manual interaction it is

also able to predict a deformed model that better �ts the point cloud. Other

methods, such as [104, 161] attempt the registration of preoperative models di-

rectly on the intraoperative images requiring manual image annotations. Even

though they still show high errors in areas not visible from the camera, these
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methods showed extremely good performances in coping with deformations.

Both use biomechanical models to simulate deformations, and [161] requires

an additional preoperative step where multiple possible patient-specifc simu-

lations have to be performed.

The most similar works to the one proposed in this chapter (and in par-

ticular in Sec. 3.2) are [1] and [121]. [1] leverages a voxel-based conditional

VAE to complete missing segments of bone and plan jaw reconstructive sur-

gical procedures. However, the anatomical structures are not deformable, the

missing segments are small compared to the complete shape, and the solution

is constrained by the remaining healthy tissues. Liver shape completion is

more ill-posed because the liver is highly deformable and the missing parts

are much larger than the partial intraoperative shape. In addition, as men-

tioned in Sec. 2.1, voxel-based representations of shapes are ine�cient volume

representations that struggle to achieve high resolutions and to handle defor-

mations. Therefore, the proposed method represents 3D shapes as Riemannian

manifolds discretised into meshes and uses GDL techniques to process these

data. In particular, the proposed method adapts [121] to achieve shape com-

pletion in laparoscopic liver surgery by (i ) overcoming the shortage of data;

(ii ) compensating the lack of point correspondences between partial and com-

plete shapes; (iii ) rede�ning the VAE training loss to deal with non-uniformly

sampled meshes; and (iv ) leveraging preoperative data for the initialisation.

The optimisation process for shape completion, makes the methodology

suitable for registration, but there are a few key steps that need innovating.

Interestingly, this is the �rst attempt to bring GDL methods operating on

meshes in to computer assisted interventions.

3.2 Methods

The proposed method (Fig. 3.1) estimates the complete mesh of a liver given

a partial point cloud of its surface. A graph convolutional VAE is trained to

generate complete shapes (Sec. 3.2.1) and a distinct optimisation procedure
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Figure 3.1: Schematic overview of the proposed intraoperative shape completion
method. Top: a VAE ( f E; Gg) is trained on complete preoperative meshes of the
liver. Bottom: the shape completion starts with a manual selectionS on the vertices
of the preoperative meshX . The latent representation obtained encodingX is used
to initialise z. The error between the selection on the generated mesh (X 0

S = S� G(z))
and the partial intraoperative point cloud P is minimised optimising over z; R ; t ,
which separately control the shape of new generated meshes, the rotation ofP and
its translation respectively.

non-rigidly deforms them to �t the partial point cloud (Sec. 3.2.2).

3.2.1 Shape Generator

As detailed in Sec. 2.1, a 3D mesh can be represented as a graphM =

f X ; E; F g , where X 2 RN � 3 is its vertex embedding,E 2 N" � 2 is the edge

connectivity that de�nes its topology, and F 2 N� � 3 its triangular faces. Tra-

ditional convolutional operators, well suited for grid data such as images and

voxelizations, are generally incompatible with the non-Euclidean domain of

graphs. Following [121], the generative model is built with the Feature-Steered

graph convolutions de�ned in [200] and previously described in Sec. 2.3.1.

Like extensively described in Sec. 2.2.2, every VAE is made of an encoder-

decoder pairf E; Gg, where the decoder is used as a generative model and is

usually referred to as generator. BothE and G are parametrised by neural

networks whose building blocks are the Feature-Steered graph convolutions

(Sec. 2.3.1). During training, the ELBO loss in Eq. 2.2 is maximised. In prac-

tice, this is equivalent to minimising a reconstruction loss (L recon ) encouraging

the output of the VAE to be as close as possible to its input and a regularisation

term (L KL ) pushing the variational distribution towards the prior distribution

p(z), which is de�ned as an isotropic unit Gaussian distribution. While we set
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L KL to be the KL divergence (Eq. 2.1), we de�neL recon as a vertex-density-

weighted mean-squared-errors loss. Letx i be the i -th position vector (i.e. a

feature vector of size 3) andx0
i its corresponding point inX 0 = G(E(X )). We

have:

L recon =
1
N

N � 1X

i =0


 kx0
i � x i k2

2 with 
 /
1

N i

X

j 2N i

kx i � x j k2
2 (3.1)

where 
 is a vertex-wise weight that increases the contribution of the errors

in low vertex-density regions, thus preventing the generated mesh from �t-

ting only densely sampled areas. The total loss is then computed as linear

combination of the two terms: L tot = L recon + � L KL .

3.2.1.1 Data Preparation

Though the chosen graph convolution was proven e�ective also on datasets with

di�erent graph topologies [200], the liver dataset is remeshed in order to have

the same topology and known point correspondences across all the preoperative

meshes and all the generated shapes. This accelerates and eases the training

procedure, making possible the formulation of a simple and computationally-

e�cient loss function (Eq. 3.1). In addition, thanks to the consistent vertex

indexing it is possible to easily perform the initial manual selection described

in Sec. 3.2.2.

In order to consistently remesh all the livers in the dataset, an optimisation

procedure iteratively deforms an ico-sphere with a prede�ned topology and

�xed number of vertices to each liver. Following [203], the loss function used

during the optimisation is given byL remesh = � 0L Ch + � 1L n + � 2L L + � 3L E .

� 0;1;2;3 are the weights of each loss term.L Ch is the Chamfer distance that

averages the distances between each point in a mesh and the closest point in

the other mesh, and vice versa. Beings a point on the ico-sphere, andr a

point on the raw livers, the Chamfer distance can be written as:

L Ch =
X

s

min
r

ks � rk2
2 +

X

r

min
s

ks � rk2
2:
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L n is the normal loss that requires the edge between a vertex and its neighbours

to be perpendicular to the normal of the closest vertex in the ground truth. It

can be formulated as:

L n =
X

s

X

r =arg min r (ks� r k2
2 )

khs � k; n r ik 2
2; s.t. k 2 N (s);

where s is identi�ed during the computation of the Chamfer distance as the

closest vertex of the deforming ico-sphere to the points on the surface of the

raw liver. k is a neighbour ofs, n r is the normal of point r , and h�; �i is the

inner product. L L is the mesh Laplacian regularisation loss based on the Tutte

Laplacian formulation (Eq. 2.14). In its matrix form, it is computed as:

L L =
1
N

kTSk2
F ;

whereS are the vertex positions of the deforming ico-sphere withN vertices

and F indicates the Frobenius norm. This loss encourages smoothness and

helps avoiding self-intersections. Finally,L e is an edge regularisation that

reduces 
ying vertices by penalising long edges and that is computed as:

L e =
X

s

X

k 2N (s)

ks � kk2
2:

3.2.1.2 Spectral Augmentation

The small size of liver datasets makes it di�cult to train a generative model

that can generalise to new shapes. Simple shape augmentation techniques

such as random rotations, translations and scalings can be used to augment

the dataset, but shapes are not deformed and the performance gain is therefore

limited. Instead of attempting an augmentation in the spatial domain the data

augmentation is performed by operating in the frequency domain. Although

shape deformation in the frequency domain is a known concept in the literature

[180], the proposed approach simpli�es and randomises the spectral deforma-

tion making it suitable for data augmentation. Computing the eigenvalue
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decomposition of the Kircho� Laplacian (Eq. 2.13),K = U�U T , produces a

set of orthonormal eigenvectors (columns ofU ) which are the Fourier bases of

the mesh, and a series of eigenvalues (diagonal values of� ) that are its fre-

quencies. The Fourier transform of the vertices can be computed asX̂ = U T X

and the inverse Fourier transform asX = U X̂ [49].

Using these operators, each mesh is transformed into its spectral domain,

perturbed, and transformed back to the spatial domain. Hence, the spectral

augmented mesh is computed asX aug = U � U T X , where � is a vector that

randomly perturbs four mesh frequencies. In particular, the �rst frequency is

never modi�ed because, playing the role of a direct current component [28], it

would not deform the shape. One of the following three frequencies, responsible

for low frequency variations similar to scalings along the three major axes of

the mesh, is arbitrarily perturbed. The remaining three perturbations are

applied to randomly selected higher frequencies with the e�ect of a�ecting the

�ne details of the shape.

It is worth noting that the remeshed data share the same topology, thus

the set of orthonormal eigenvectors used to compute the direct and inverse

Fourier transforms can be computed one time and then used for every mesh.

3.2.2 Shape Completion

This section illustrates how a complete shape is obtained from a partial in-

traoperative point cloud P 2 RP � 3. In contrast to [121], known (or easily

computable) point correspondences between intraoperative point clouds and

the generated meshes are not available. This assumption is relaxed at the

expense of the introduction of a manual step in the procedure. In fact, the

surgeon is asked to roughly select from the preoperative 3D modelX 2 X c

a region of interest that corresponds to the visible surface in the intraopera-

tive image. To reduce computational time and increase robustness against the

errors in manual region selection and varying vertex density in the region, a

subset of the selected vertices is sampled with an iterative farthest point sam-

pling [172], obtaining a selection operatorS that gives sparser and uniformly
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Figure 3.2: Schematic description of the intraoperative liver shape completion.
Left: the shape completion starts with a manual selectionS on the vertices of
the preoperative mesh X . Centre: the latent representation obtained encoding
X , z0 = E(X ), is used to initialise z for the completion procedure. z0 is then
fed to the generator G, which reconstructs the preoperative shape used to begin
the shape completion. Right: the error between the selection on the generated
mesh (X 0

S = S � G(z)) and the partial intraoperative point cloud P is minimised
optimising over z; R ; t , which separately control the shape of new generated meshes,
the rotation of P and its translation respectively.

sampled vertices (Fig. 3.2Left ). Since mesh topology consistency is guaran-

teed by construction, the selected vertices will always have the same indexing

for each meshX 0 2 X c generated with the model discussed in Sec. 3.2.1. The

shape completion problem is thus formulated as �nding the best latent variable

z� that generates a complete shapeX 0� plausibly �tting P (Fig. 3.2 Centre).

Given X 0
S = S� X 0 = S� G(z) � X 0 the subset of selected and sampled vertices

from a generated shape, the optimisation is formulated as:

min
z;R ;t

L Ch

�
S � G(z); RP + t

�
: (3.2)

It is worth mentioning that not having point correspondences betweenP and

X 0
S it is not possible to compute the rotationR and translation t in a closed

form solution as in [121]. Therefore, they are iteratively updated alongside

z in the same optimisation procedure. The gradient of the loss in Eq. 3.2

directly in
uences R and t , but it needs to be back-propagated through the

generator networkG, without updating the network's weights, to update z.

The completion procedure is initialised by centeringP and X 0
S, and by set-

ting an initial z = z0 = E(X ), thus using as prior the latent representa-

tion of the preoperative mesh (Fig. 3.2Right). The initialisation z0 can be

further re�ned to z�
0 by running a few iterations of a second optimisation
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z�
0  arg minz0

�
maxi kx i � x0

i k
2
2

�
. Finally, by adding to the latent initialisa-

tion a small Gaussian noise� � G (0; � ) with � ii � I ii , it is also possible to

generate multiple complete shapes conditioned on the preoperative data and

that plausibly �t the intraoperative point cloud P. The hyperparameters used

during shape completion are detailed in Sec. 3.3.2.

3.3 Results

The proprietary dataset collected for this work consists of 50 meshes of livers

which were segmented and reconstructed from preoperative CT scans of di�er-

ent patients. The segmentation and initial mesh generation was performed by

Visible Patient. 45 meshes were used to train the VAE, while the remaining

5 meshes were used as a test set to evaluate the network, data augmentation,

and shape completion. Given the limited size of the dataset, to not bias re-

sults toward the test set, hyperparameters were tuned on the training set. The

study was approved by the local research ethics committee (Ref: 14/LO/1264)

and written consent obtained from each patient.

The remeshing is performed by deforming an ico-sphere with 2564 vertices.

For this, and all the other optimisations described in this paper, theAdam

optimiser [97] is used. All the raw liver shapes are remeshed with 500 iterations

at a �xed learning rate of lr = 5e� 3. The weights of the loss functionL remesh

are � 0 = 5, � 1 = 0:2, � 2 = 0:3, and � 3 = 15.

The VAE is built using M = 8 weight matrices, batch size 20 and latent

size 128. LeakyReLU and batch normalisation are used after every layer (see

architecture details in the appendix Sec. A.1). The network is implemented

in PyTorch Geometric [60] and trained for 200 epochs withlr = 1e� 3 and a

KL divergence weight� = 1e� 6. The training was performed on an NVIDIA

Quadro P5000 and took approximately 9 hours.

The reconstruction performance of the VAE is evaluated with and without

data augmentation while �xing the number of iterations. Applying the spectral

augmentation (Fig. 3.3A) 100 new meshes are generated for each model in the
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Figure 3.3: Augmentation and Qualitative Results A: e�ects of the spectral aug-
mentation where a real liver (green) is subject to two di�erent random augmentation
(black). B : laparoscopic image and comparison between the proposed shape com-
pletion (blue) and the Go-ICP registration (black). The intraoperative point cloud
is shown in red and the selected point in blue. The contours of the silhouettes are
overlaid also on the laparoscopic image.

training set, thus obtaining 4500 models. An additional online data augmen-

tation composed of random rotations, scalings, and translations is applied. A

mean-squared testing error of (0:28� 0:04) mm is obtained when both augmen-

tations are applied, of (0:45� 0:18) mm with the online augmentation alone, of

(0:50� 0:03) mm with the spectral augmentation only, and of (0:92� 0:22) mm

without any augmentation. The evaluation of the computational cost asso-

ciated to the spectral augmentation reported that when it is performed by

computing the Fourier operators for each mesh it takes 0:45� 0:05 seconds per

mesh, while, when the operators are precomputed (Sec. 3.2.1) the computa-

tional time is reduced by one order of magnitude to 0:05 � 0:01 seconds per

mesh.

3.3.1 Qualitative Results

Given the lack of intraoperative 3D ground truths for registration in laparo-

scopic liver surgery, the evaluation of the proposed method on real data is

purely qualitative. In a real operative scenario the computation of a dense

and reliable point cloud is still a major challenge. An o�-the-shelf depth recon-

struction network [35] is used to obtainP from recti�ed images of a calibrated

laparoscope. Given the predicted depth map and a manual segmentation of

the liver, P is computed �rst, then the complete shapeX 0� (Fig. 3.3B) is

estimated.
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3.3.2 Quantitative Results

The quantitative assessment of the shape completion is performed on syn-

thetic data. The �ve meshes in the test set are manually deformed, trying

to reproduce intraoperative liver deformations similar to those expected in a

laparoscopic procedure and characterised in [80]. To obtain intraoperative par-

tial point clouds, the surface of the deformed models is sampled with vertex

selections on three regions: entire front surfacePF , left lobe PL , and right lobe

PR . Each deformed model is considered the intraoperative ground truthX GT

to be inferred given a partial point cloud. To maintain a higherP density,

X GT is not remeshed. Eq. 3.2 is optimised for 100 iterations usingAdam with

a di�erent learning rate for each term. To encourage the optimisation overz

and thus the generation of more diverse, progressively deformed meshesX 0,

the learning rate responsible of updating the latent is set tolr z = 5e� 2. The

learning rates forR and t are empirically set tolr R = 1e� 2 and lr t = 5e� 5. Ro-

tations are regressed faster because the two point clouds were initially centred.

Figure 3.4: Quantitative Results. Rows: results for intraoperative point clouds
of front surface PF , right lobe PR , and left lobe PL . Columns: A) front and
back view of intraoperative point cloud P (red), intraoperative ground truth X GT

(green), and prediction X 0� (blue). B) Comparison of vertex-wise distances (mm) for
the proposed method (blue) and Go-ICP (pink). Errors are separately computed in
the invisible parts of the liver and in the visible parts, which are within the camera's
�eld of view. C) Front and back view of X 0�. Colours represent the algorithm with
a smaller vertex error.
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In casez0 is further re�ned to z�
0, the same learning ratelr z = 5e� 2 is used for

20 iterations. In case multiple complete shape proposals are desired, Eq. 3.2

can be generalised to process batches with a re�ned initialisation perturbed

by � with � ii = 1
10.

The shape completion is evaluated for each partial shape without� pertur-

bation. Since the procedure requires a manual step currently performed with a

lasso selection that might a�ect results, the evaluation is repeated 3 times, for

a total of 45 experiments. Selections could be re�ned and took approximately

one minute each. The proposed method is compared with the rigid registra-

tion using Go-ICP [127] which has comparable computational time. The lack

of point correspondences betweenX GT and X 0� does not make possible to eval-

uate the proposed method using mean-squared errors. Therefore, a variation

of L Ch computing vertex-wise errors onX 0� is de�ned. For each vertex of one

mesh the distance to the closest point on the other mesh is computed. All the

distances are assigned to the vertices ofX 0� from which they were computed

and are locally averaged. Results are reported in Fig. 3.4.

3.4 Discussion

While this work is about shape completion, it could become an alternative

to registration or provide a better initialisation for such algorithms. From

Fig. 3.3 it can be observed that the proposed method seems to �t better the

point cloud especially on the left lobe. The lack of a ground truth makes

impossible to draw further conclusions from this result. However, observing

Fig. 3.4 (columns B and C), it can be concluded that the proposed method

outperforms Go-ICP in visible areas, and, despite performing worse in invis-

ible areas, it predicts a realistic looking model of the liver. Of particular

importance is the improvement over visible areas, because these regions are

the only ones in the narrow �eld of interest of the surgeon, where an accu-

rate deformation is required. Since the manual selection of the visible area on

the preoperative model a�ects the quality of the results, future work not only
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should aim at quantifying the uncertainty involved in the manual interaction,

but also at avoiding it by predicting point correspondences between partial

and complete shapes. In addition, the use of biomechanical constraints for

deformation could reduce errors in invisible areas. In fact, the unconstrained

deformations operated by the proposed method through the optimisation of

z, despite generating plausible livers �tting the partial intraoperative point

cloud, often downscale invisible areas. Even though the proposed method can

propose multiple solutions (Sec. 3.2.2), identifying the correct complete shape

is essential to improve the method and outperform Go-ICP everywhere. Thus,

the introduction of biomechanical constraints shall be researched while avoid-

ing any patient speci�c training or simulation. To introduce these constrains

locally, the generative model would need to have control over the generation

of speci�c parts of the liver. This can be achieved by further disentangling the

factors of variation optimised during shape completion. Since datasets of liver

shapes are limited in size and livers do not have peculiar local shape attributes,

the disentanglement methods proposed in this thesis are developed relying on

digital human shapes where there is no paucity of data and shapes parts are

easily distinguishable. Nevertheless, the methods proposed in the following

chapters could be applied also to liver shapes and explored in conjunction

with the introduction of biomechanical constraints.



Chapter 4

Swap Disentangled Variational

Autoencoder

Learning a disentangled, interpretable, and structured latent representation in

generative models of 3D human shapes is still an open problem. The problem is

particularly acute when control over local shape properties is required. Experi-

mental results conducted on 3D meshes show that state-of-the-art methods for

latent disentanglement are not able to disentangle identity attributes of faces

and bodies (e.g., mouth, nose, arms, chest, etc.). The intuitive yet e�ective self-

supervised approach described in this chapter, called SD-VAE, can be used to

train a 3D shape VAE which encourages a disentangled latent representation of

identity attributes. Curating the mini-batch generation by swapping arbitrary

attributes across di�erent shapes allows to de�ne a loss function leveraging

known di�erences and similarities in the latent representations. The proposed

method properly decouples the generation of such attributes while maintaining

good representation and reconstruction capabilities.

A paper on this work has been published as [62]: Simone Foti, Bongjin

Koo, Danail Stoyanov, Matthew J. Clarkson. 3D Shape Variational Au-

toencoder Latent Disentanglement via Mini-Batch Feature Swap-

ping for Bodies and Faces * . Proceedings of the IEEE/CVF Conference on

* Although they can be used interchangeably, while in the published paper we refer to
local shape parts as \features", in this thesis we refer to them as \attributes" to improve
consistency with the following chapters.
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Computer Vision and Pattern Recognition (CVPR), pp. 18730-18739. 2022.

© 2022 IEEE.

In this Chapter, after a brief introduction (Sec. 4.1), the proposed method

is described (Sec. 4.2). The method is then thoroughly evaluated and compared

in the experiments section (Sec. 4.3). A discussion on the strengths of the

method as well as its limitations and future research directions concludes the

chapter (Sec. 4.4).

4.1 Introduction

As detailed in Sec. 1.1, the generation of 3D human faces and bodies is a

complex task with multiple potential applications. Currently, the generation

procedure is either manually performed by highly skilled artists or it involves

semi-automated avatar design tools. Even though these tools greatly simplify

the design process, they are usually limited in 
exibility because of the intrinsic

constraints of the underlying generative models (Sec. 1.1). These models all

share one particular issue: the creation of local attributes is di�cult or even

impossible. In fact, not only do generative coe�cients (or latent variables) lack

any semantic meaning, but they also create global changes in the output shape.

For this reason, this chapter focuses on the problem of 3D shape creation by

enforcing disentanglement among sets of generative coe�cients controlling the

identity of a character.

Unlike the latent disentangled models capable of controlling local shape

properties introduced in Sec. 2.4, the SD-VAE here proposed relies on a single

VAE, which is trained by curating the mini-batch generation procedure and

with an additional loss. The intuition behind this method is that when swap-

ping attributes (e.g. nose, ears, legs, arms, etc.) across the input data in a

controlled manner (Fig. 4.1,Left ), not only it is possible to know a priori which

shapes within a mini-batch have (do not have) the same attribute, but also to

know which are (are not) created from the same face (body). These di�erences

and similarities across shapes should be captured in the latent representation.
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Therefore, assuming that di�erent subsets of latent variables correspond to dif-

ferent attributes, it is possible to leverage the structure of the input batch to

encourage a more disentangled, interpretable, and structured representation.

With the objective of building a model capable of generating 3D meshes,

a VAE architecture is built by extending [69](see Sec. 2.3.2). This state-of-

the-art model proved to be fast and capable of better capturing non-linear

representations of 3D meshes, while leveraging very intuitive convolutional op-

erators characterised by a reduced number of parameters. Nonetheless, the

network choice is arbitrary and the method is expected to be working also

with other network con�gurations and operators. Even though meshes are

the primary data structures, it is also worth noting that, by providing seman-

tic segmentations of the di�erent features, SD-VAE is applicable to voxel- or

point-cloud-based generative models. The generality of the proposed method

is particularly important in the current geometric deep learning �eld, where

de�nitions of 3D convolutions and pooling operators are still an open problem.

To summarise, the key contributions of the proposed approach are: (i ) the

de�nition of a new mini-batching procedure based on attribute swapping, (ii )

the introduction of a novel loss function capable of leveraging shape di�erences

and similarities within each mini-batch, and (iii ) the consequent creation of

a 3D-VAE capable of generating 3D meshes from a more interpretable and

structured latent representation.

4.2 Method

The proposed method (Fig. 4.1) provides more interpretable and structured la-

tent representations for self-supervised 3D generative models. This is achieved

by training a mesh-convolutional variational autoencoder (Sec. 4.2.1) with a

mini-batch controlled attribute swapping procedure and a latent consistency

loss (Sec. 4.2.2).
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Figure 4.1: Schematic description of the SD-VAE, a 3D-VAE where each subset of
latent variables controls a shape attribute. Left : at the core of the proposed method
lies a curated mini-batching procedure such that a mini-batch of vertices (X ij ) is
created by swapping an arbitrary attribute across di�erent 3D shapes. Notice that
attributes from the same identity have the same colour.Centre: a 3D-VAE ( f E; Gg)
encodesX ij in its latent representations zij = ( zf

ij jzc
ij ), which are subsequently

decoded intoX 0
ij . In this case f corresponds to the nose. Therefore, thanks to the

proposed latent consistency loss, the latent subsetszf
ij control the shape of the nose

and zc
ij control the shape of the rest of the face.Right: visual representation of all

the di�erent mesh attributes for which it is sought to obtain a disentangled latent
representation. © 2022 IEEE.

4.2.1 Mesh Variational Autoencoder

Following the convention introduced in Sec. 2.1, a manifold triangle mesh is de-

�ned as M = f X ; E; F g, whereX 2 RN � 3 is its vertex embedding,E 2 N" � 2

is the edge connectivity that de�nes its topology, andF 2 N� � 3 are its trian-

gular faces. Assuming that meshes share the same topology across the entire

dataset, E and F are constant and meshes di�er from one another only for

the position of their vertices, which are assumed to be consistently aligned,

scaled, and with point-wise correspondences. Since traditional convolutional

operators are not compatible with the non-Euclidean nature of meshes, the pro-

posed generative model is built with the simple yet e�cient approach de�ned

in [69]. Convolution operators are thus de�ned as learnable functions over pre-

computed dilated spiral sequences [69]. Pooling and un-pooling operators are

de�ned as sparse matrix multiplications with pre-computed transformations

that are obtained with a quadric sampling procedure [69, 174] (see Sec. 2.3.2).

The proposed 3D-VAE is built as an encoder-decoder pair (Fig. 4.1,Cen-
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tre), where the decoder is used as a generative model and is referred to as

generator. Throughout the entire network, each spiral++ convolutional layer

is followed by an ELU activation function. However, inE convolutions are

interleaved with pooling layers and inG by un-pooling layers. There are also

three fully connected layers: two of them are the last layers ofE predicting

the mean and the diagonal covariance of the variational distribution, the other

is the �rst layer of G and transformsz � Z back into a low-dimensional mesh

that can be processed by mesh convolutions (more details are provided in the

appendix Sec. A.1).

Like detailed in Sec. 2.2.2, during training the objective is to maximise

the ELBO loss. In practice, maximising the ELBO in Eq. 2.2 is equivalent to

minimising the following loss:

L VAE = L R + � L L + � L KL (4.1)

where � and � are weighting constants. L R = 1
N

P N
n=1 kx0

n � xnk2
2 is the

mean squared error between the input (xn 2 X ) and the corresponding

output ( x0
n 2 X 0 = G(E(X )) = G(z)) vertices. This reconstruction loss

encourages the output of the VAE to be as close as possible to its input.

L KL = DKL [q� (zjX )jjp(z)] is the KL-divergence (Eq. 2.1) pushing the varia-

tional distribution q� (zjX ) towards the prior distribution p(z), which is de�ned

as an isotropic unit Gaussian distribution. Finally,L L is a smoothing term,

not conventionally present in Eq. 2.2 and based on the Tutte Laplacian [150]

that is computed on the output vertices as:

L L =
1
N

NX

n=1

k� nk2 with � n =
1

jN n j

X

e2N n

x0
e � x0

n

where � n is the Laplacian of then-th output vertex, and Nn the set of its

neighbouring vertices with cardinality jN n j. L L is e�ciently computed by

relying on matrix operators like in Sec 3.2.2. Concretely,� = [ � 1; :::; � N ]T =

TX 0, whereT is the Tutte Laplacian operator de�ned in Eq. 2.14. Note that
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Figure 4.2: Examples of attribute swapping for di�erent attributes and di�erent
subjects. © 2022 IEEE.

vertices are normalised by subtracting the per-vertex mean of the training set

and dividing the result by the per-vertex standard deviation of the training

set, thus the losses in Eq. 4.1 are computed on normalised vertices. Also, all

loss terms are reduced across mini-batches with a mean reduction.

4.2.2 Mini-Batch Attribute Swapping and Latent Con-

sistency Loss

The objective is to create a generative model where vertices corresponding to

speci�c mesh attributes are controlled by a prede�ned set of latent variables.

To accomplish this, the �rst step requires to de�neF arbitrary mesh attributes

on a mesh template (Fig. 4.1,Right) by manually colouring mesh vertices.

Since vertices have point-wise correspondences (Sec. 4.2.1), attributes can be

easily identi�ed for every other mesh in the dataset without manually segment-

ing them. This makes possible to swap attributes from one mesh to another

by replacing the vertices corresponding to the selected attribute (Fig. 4.2).

Attribute swapping is at the core of SD-VAE and it facilitates the cura-

tion of the mini-batch generation in order to properly shape and constrain the

latent representation of each mesh. Each mini-batch of sizeB can be thought

of as a squared matrix of size
p

B �
p

B, where each elementX ij is the vertex

embedding of a di�erent mesh. As it can be seen from Fig. 4.1 (Left ), while ele-

ments on the diagonal of this matrix are loaded from the dataset, the remaining

elements are created online by swapping attributes. Every time a mini-batch

is created, an attribute is randomly selected and swapped. Therefore, each
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row of the matrix contains the same mesh with di�erent attributes, while each

column contains di�erent meshes with the same attribute. Interestingly, the

naive implementation of the attribute swapping causes visible surface discon-

tinuities in most input meshes (Fig. 4.2), but discontinuities are not present

in reconstructed meshes thanks to the Laplacian regulariser in Eq. 4.1.

Obviously, when a mini-batch is encoded a batched latent is computed. As

shown in Fig. 4.1 (Centre), for eachX ij there is a correspondingzij � E(X ij )

which is evenly split inF subsets of latent variables, one for each mesh attribute

(zij = f z!
ij gF

! =1 ). Note that even though every latent subsetz!
ij has the same

number of variables, uneven splits are also admissible.

Every time a mini-batch is created by swapping an attributef , it is pos-

sible to de�ne zij = ( zf
ij jzc

ij ). zf
ij is the subset of latent variables controlling

the attribute swapped across the current mini-batch.zc
ij is the part that con-

trols everything else and is de�ned aszc
ij = f z!

ij gF
! =1 n f zf

ij g. Inspired by both

triplet losses and [183], and thanks to the curated mini-batching, di�erences

and similarities in the latent representation of the di�erent X ij can be en-

forced by requiring matchedz!
ij pairs to have a distance in latent space that is

smaller by a margin,� , than the distance for unmatched pairs. While travers-

ing the diagonal of the mini-batch latent matrix, all the elements on the row

containing the diagonal elementzss are compared with those in the column

containing zss (8s 2 f 1; :::;
p

Bg). When consideringzf
ij latent similarities

are enforced across columns and latent di�erences across rows by evaluating:

kzf
ps � zf

qsk
2
2 + � 1 � k zf

sp � zf
sqk

2
2, 8s; p; q 2 f 1; :::;

p
Bg with p 6= q. This is

justi�ed by the fact that elements in X ij have the same mesh attribute across

columns and di�erent mesh attributes across rows. Vice versa, when consider-

ing zc
ij , which controls all the other mesh attributes for the current mini-batch,

similarities are enforced row-wise and di�erences column-wise by evaluating:

kzc
sp � zc

sqk
2
2+ � 2 � k zc

ps � zc
qsk

2
2; 8s; p; q2 f 1; :::;

p
Bg with p 6= q. The proposed
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latent consistency loss is thus de�ned as:

L c = 


p
BX

s;p;q=1
p6= q

max
h
0; kzf

ps � zf
qsk

2
2 � k zf

sp � zf
sqk

2
2 + � 1

i
+

+ max
h
0; kzc

sp � zc
sqk

2
2 � k zc

ps � zc
qsk

2
2 + � 2

i
(4.2)

where 
 = 1
B

p
B � B

is a batch normalisation term that considers all the latent

distances comparisons performed while computingL c. Combining Eq. 4.1 with

Eq. 4.2 and said� 2 R a weighting coe�cient, it is �nally possible to formulate

the total loss as:

L = L VAE + � L c = L R + � L L + � L KL + � L c (4.3)

4.3 Experiments

4.3.1 Datasets

The main objective of this work is to train a generative model capable of gener-

ating di�erent identities from a set of attribute-disentangled latent variables.

For the experiments, datasets containing as many subjects as possible in a

neutral expression are needed. However, most open source datasets for 3D

shapes of faces, bodies, or animals contain only a limited number of subjects

captured in di�erent expressions or poses (e.g.Mpi -Dyna [169],Smpl [125],

Surreal [199], Coma [174], Smal [228], etc.). For this reason, this work

relies on two linear models that were built using a conspicuous number of

subjects and that are released for non-commercial scienti�c research purposes:

Uhm [168] andStar [158] (Sec. 2.2). From these models 10; 000 meshes are

randomly sampled and subsequently used to create one dataset for faces and

one for bodies. 90% of the data are used for training, 5% for validation, and

5% for testing.
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4.3.2 Implementation Details

All networks were implemented in PyTorch and trained for 40 epochs using the

Adam optimiser [98] with a �xed learning rate of lr = 1e� 4 and mini-batch

size B = 16 (note that the attribute swapping is applied to SD-VAE only).

Spiral convolutions had spiral length of 9 and spiral dilation of 1. The last

convolutional layer ofE and the �rst of G had 64 features while all the others

32. The sampling factors used during the quadric sampling for the creation of

the up- and down-sampling transformation matrices were set to 4. Since the

two datasets have a signi�cantly di�erent number of vertices (N faces = 71; 928

and Nbodies = 6; 890), networks operating on faces have 4 convolutional layers

interleaved with sampling operators in bothE and G, while networks operating

on bodies have only 3. For the same reason latent sizes are di�erent: 60

variables for faces and 33 for bodies. Considering that the face template was

segmented in 12 regions and the body template in 11, eachz!
ij has 5 variables

for faces and 3 for bodies (more details on the architecture are reported in the

appendix Sec. A.1). The weight of the Laplacian regulariser was set to� = 1,

while the latent consistency weight was� = 0:5 for faces and� = 1 for bodies.

� 1 and � 2 were set to� 1 = � 2 = 0:5 for both datasets. Training was performed

on a single Nvidia Quadro P5000 for faces and on an Nvidia GeForce GTX

1050Ti for bodies. Approximately 120 experiments were run in 25 GPU days.

4.3.3 Comparison with Other Methods

The proposed SD-VAE is compared with other self-supervised methods based

on encoder-decoder pairs. For a fair comparison, all methods share the same

underlying architecture, which is referred to as VAE and which is already

detailed in Sec. 4.2.1. Consistently with the current literature [174, 121, 61,

216], it was found that the weight coe�cient (� ) on the KL divergence in VAEs

for meshes is smaller than the one used for images. In fact, with� � 1 the

VAE is not able to reconstruct the data. Thus, results are reported on VAEs

with � 2 f 1e� 2; 1e� 4g. It is worth noting that the discrepancy between meshes

and images does not allow to de�ne a� -VAE with the same criteria used in




	Introduction
	Problem Statement and Motivation
	Aim of the Thesis
	Structure of the Thesis

	Background
	Shape Representation
	Statistical Shape Models
	Principal Component Analysis
	Variational Autoencoders
	Generative Adversarial Networks

	Geometric Deep Learning
	Feature Steered Graph Convolutions
	Spiral++ Convolutions
	Pooling and Un-pooling with Fixed Topologies

	Latent Disentanglement
	- -VAE
	Disentangled Inferred Prior VAE
	Factor VAE

	Spectral Geometry
	An Overall Perspective on the Topics

	Intraoperative Shape Completion
	Introduction
	Computer Assisted and Minimally Invasive Surgery
	Shape Completion for Computer Assisted Liver Surgery

	Methods
	Shape Generator
	Shape Completion

	Results
	Qualitative Results
	Quantitative Results

	Discussion

	Swap Disentangled Variational Autoencoder
	Introduction
	Method
	Mesh Variational Autoencoder
	Mini-Batch Attribute Swapping and Latent Consistency Loss

	Experiments
	Datasets
	Implementation Details
	Comparison with Other Methods
	Evaluation of Latent Disentanglement
	Ablation Study
	Generalisation Capabilities
	Latent Space Interpolation
	Direct Manipulation

	Discussion

	Craniofacial shape analysis
	Introduction
	Virtual Surgical Planning in Plastic Surgery
	Virtual Surgical Planning of Craniofacial Syndromes

	Methods
	Data sources and processing
	Data augmentation with spectral interpolation
	Swap disentangled 3D mesh variational autoencoder
	Latent manifold visualisation
	Syndrome classification
	Evaluating the effects of different surgical approaches using latent interpolation

	Results
	Data augmentation
	Model and latent disentanglement evaluation
	Latent Manifold visualisation
	Syndrome classification
	Evaluating the effects of different surgical approaches
	Analysis of Complex Cases

	Discussion

	Local Eigenprojection Disentanglement
	Introduction
	Method
	Local Eigenprojection Loss
	Mesh Variational Autoencoder
	Mesh Generative Adversarial Networks

	Experiments
	Datasets
	Implementation Details
	Local Eigenprojection Distributions
	Comparison with Other Methods
	Evaluation of Latent Disentanglement
	LED-VAE Additional Experiments

	Discussion

	Conclusion
	Limitations and Future Work

	Appendices
	Appendix
	Architectures
	UCL Research Paper Declaration Forms

	Bibliography

