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Abstract
Chandler et al. [COJ15] presented interpolation-based pathline tracing as an alternative to numerical integration for advecting
tracers in particle-based flow fields and showed that their method has lower error than a numerical integration-based method
for particle tracing. We seek to understand the sources of the error in interpolation-based pathline tracing. We present a
formal analysis of the theoretical bound on the error when advecting pathlines using this method. We characterize the error
experimentally using characteristics of the flow field such as neighborhood change, flow divergence, and trajectory length.
Understanding the sources of error in an advection method is important to know where there may be uncertainty in the resulting
analysis. We find that for interpolation-based pathline tracing the error is closely related to the divergence in the flow field.

Categories and Subject Descriptors (according to ACM CCS): G.1.0 [Mathematics of Computing]: Numerical Analysis—Error
Analysis G.1.0 [Mathematics of Computing]: Numerical Analysis—Interpolation

1. Introduction

Fluid simulations are used in many scientific application areas such
as astrophysics, geology, and medicine. A fluid simulation can be
classified as either Eulerian or Lagrangian. Eulerian fluid simula-
tions evaluate physical quantities of the flow at a number of fixed
reference points in the domain. This type of fluid simulation is very
common, and analysis techniques for Eulerian simulations are well
known. We focus on Lagrangian fluid simulations which evaluate
the physical quantities of the flow on a set of moving reference
points. Typically this takes the form of a particle-based fluid simu-
lation. Particle-based flow fields have many advantages over vector
field representations: it is easy to simulate moving obstacles and
adjust for varying levels of detail in different regions of the flow.

Particle advection is the basis of many flow analysis techniques.
Therefore, it is important to develop accurate algorithms for ad-
vecting particles in different types of flow fields. We analyze the
error in the interpolation-based pathline tracing method of Chan-
dler et al. [COJ15]. For a new method, it is important to understand
sources of error as this affects the subsequent analysis of the data.
Chandler et al. present a comparison of the average error of their
method to Runge-Kutta 4/5 numerical integration. We examine the
advection error compared to flow characteristics such as neighbor-
hood change, flow divergence, and trajectory length and find that
advection error is correlated with divergence in the flow. Addition-
ally, we give a theoretical bound on the advection error using nu-
merical analysis techniques. We examine the theoretical error for a
single advection step and the accumulation of error over a pathline.

2. Background

Our work further analyzes and characterizes the advection error in
the work of Chandler et al. [COJ15] on pathline tracing for particle-

based flow fields. We review their method and present an overview
of Smoothed Particle Hydrodynamics (SPH) fluid simulations.

2.1. Smoothed Particle Hydrodynamics

SPH is a particle-based fluid simulation method in which each
particle carries physical quantities, such as density, pressure, and
velocity, that define the flow field [GM77]. Each particle moves
through the domain, and the output of the simulation is the location
of each particle and the values of its physical quantities for every
time step of the simulation. Each particle can be tracked across time
steps so the simulation output forms a set of trajectories, or path-
lines, describing the movement of the flow field over time.

In flow analysis, one often needs to sample a physical quantity
at an arbitrary location in the domain. For an SPH simulation this
is done by interpolation using a kernel weighting function W . Each
simulation particle has an associated radius, called the smoothing
length h, defining the region where it can be used for interpolation.
Evaluating a quantity Q at location P takes the following form:

Q(P) = ∑
i

QiW (‖P−Pi‖,hi). (1)

2.2. Interpolation-based Pathline Tracing

Chandler et al. trace new pathlines in the flow field by interpolating
the trajectories of the simulation particles. Their method uses the
SPH kernel function to assign weights to neighboring particles sur-
rounding the tracer particle to be advected. A neighboring particle
is one whose smoothing length overlaps the advected location. Af-
ter identifying the neighboring particles and assigning weights they
use the following equation to advect the tracer particle P:

P(t j+1) = P(t j)+∑
i

Wi(t j)(Pi(t j+1)−Pi(t j)). (2)
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After advecting the particle, they update the neighbors in the new
time step to account for convergence and divergence and repeat the
process for the remaining time steps. We analyze the error in this
advection algorithm based on various characteristics of the flow
field such as the neighborhood change, the flow divergence, and
the magnitude of the reference tracer movement.

3. Related Work

In this section we focus on particle-based methods and error analy-
sis for flow visualization. For an overview on flow visualization see
Post et al. [PVH∗03] and McLoughlin et al. [MLP∗10].

In addition to Chandler et al.’s method, Agranovsky et al. also ex-
plore particle-interpolation-based methods. They advect particles
in-situ and store the resulting trajectories as the simulation out-
put [ACG∗14]. They find that this representation is more efficient
for post hoc analysis than a vector field representation. Bujack and
Joy improve on this method of storing Lagrangian trajectories by
using parameter curves to give a smoother representation of the
trajectory and improve accuracy between stored time steps [BJ15].
Agranovsky et al. [AOGJ15] also use a multi-resolution Lagrangian
representation to visualize path surfaces by interpolating the trajec-
tories stored in a multi-resolution flow map.

Our work targets particle-based flow fields, specifically SPH
simulations. Many visualization techniques for SPH simulations
involve volume rendering of different physical quantities of the
flow or column density, the integral of the density through the
view direction. Price [Pri07], Fraedrich et al. [FAW10], and Re-
ichl [RTW13] implement these types of techniques for SPH vi-
sualization. There has not been as much work in the area of ex-
tracting flow features from SPH simulations. Robinson [Rob09]
presents a method for characterizing mixing behavior in SPH
simulations using FTLE values. Cao [Cao13] uses FTLE values
and rotation measures to visualize SPH simulations. Schindler et
al. [SFBP09] extract vortex core lines in SPH simulations. Biddis-
combe et al. [BGM07] combine 2D and 3D rendering for SPH and
also show the trajectories of existing simulation particles.

Understanding sources of error is important for an accurate anal-
ysis of flow behavior. Chen et al. explore the error introduced by
downsampling velocity fields in time by modeling the error as a
Gaussian distribution [CBS15]. They use a forward and backward
advection approach to minimize error between stored time steps.
Lodha et al. visualize uncertainty in streamline tracing with differ-
ent integration methods, representing potential error using glyphs
and color maps [LPSW96]. Botchen et al. examine error introduced
by acquiring flow data with Particle Image Velocimetry [BWE05].
They visualize the root mean square of the measurements using
texture advection with blurring to represent uncertain areas. Lopez
and Brodlie visualize the accuracy of particle advection using re-
integration, velocity residuals, and global error from the integration
method [LB98]. These works focus on understanding error in Eu-
lerian flow fields; our work aims to characterize sources of error for
interpolation-based advection in particle-based flow fields.

4. Theoretical Bound on Advection Error

In this section we give a theoretical bound on the error when trac-
ing pathlines. Bujack and Joy [BJ15] have shown that this method
is a special kind of numerical one-step integration method and have

given a global error estimate for the case of linear interpolation on
a regular grid. The main structure of our error is comparable, but
instead of linear interpolation, we interpolate with the SPH smooth-
ing kernel for an approximation of particle positions.

We approximate the path of an arbitrary location P using the
particles Pi in its neighborhood ‖P−Pi‖≤ hP as described in Eq. 2.
Using the flow map notation, this can be written as

PSPHFt j
t j−1

(P) = Ft j−1
t j−1

(P)+
∑Pi∈BhP (P)

wi(F
t j
t j−1

(Pi)−Ft j−1
t j−1

(Pi))

∑Pi∈BhP (P)
wi

,

(3)
where PSPH is the SPH interpolation, hP is the smoothing length,
BhP(P) is a ball with radius hP around P, and the weights wi are
computed using an SPH weighting kernel W . Applying the Taylor
expansion with a value t ∈ [t j−1, t j] reveals

PSPHFt j
t j−1

(P) =Ft j−1
t j−1

(P)+ht
∑Pi∈BhP (P)

wiḞt
t j−1

(Pi)

∑Pi∈BhP (P)
wi

, (4)

which means that the SPH interpolation has the form of a one-step
integration method [Sch02, HH12].

The local truncation error Tj at particle P coincides with the in-
terpolation error inferred by the SPH smoothing kernel. Using the
multivariate Taylor expansion, [GL10], with ζ ∈ BhP(P), we see

Tj =|PSPHFt j
t j−1

(P)−Ft j
t j−1

(P)|

(3)
=|Ft j−1

t j−1
(P)+

∑wi(F
t j
t j−1

(Pi)−Ftj−1
t j−1

(Pi))

∑wi
−Ft j

t j−1
(P)|

Taylor
= |Ft j−1

t j−1
(P)+

∑wi(F
t j
t j−1

(P)−Ft j−1
t j−1

(P))
∑wi

+
∑wi(P−Pi)

T ∇(Ft j
t j−1

(ζ )−Ft j−1
t j−1

(ζ ))

∑wi
−Ft j

t j−1
(P)|

=|
∑wi(P−Pi)

T ∇(Ft j
t j−1

(ζ )−Ft j−1
t j−1

(ζ ))

∑wi
|

≤∑wi‖P−Pi‖
∑wi

‖∇(Ft j
t j−1

(ζ )−Ft j−1
t j−1

(ζ ))‖

≤hP‖∇(Ft j
t j−1

(ζ )−Ft j−1
t j−1

(ζ ))‖.

(5)

As is known from numerics of ordinary differential equations,
the global truncation error E j is related to local truncation error by

E j ≤ j max
i=1,..., j

TieL(t j−t0) (6)

with the Lipschitz constant L [Sch02, HH12]. That reveals

E j
(5)
≤ j max

i=1,..., j
max
ζ∈Rd

hP‖∇(Ft j
t j−1

(ζ )−Ft j−1
t j−1

(ζ ))‖eL(t j−t0)

Taylor
≤ j max

i=1,..., j
max
ζ∈Rd

hPht‖∇Ḟt
t j−1

(ζ )‖eL(t j−t0)

=|t j− t0|hP max
i=1,..., j

max
ζ∈∈Rd

‖∇Ḟt
t j−1

(ζ )‖eL(t j−t0).

(7)

The latter estimate shows that the asymptotic behavior of the
global truncation error for advecting a particle across a time inter-
val only depends on the spatial resolution hP and not the temporal
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resolution ht . This holds with the concept of a particle-based flow
field storing trajectories that contain the exact start and end point
for each particle, regardless of the number of time steps in between.
It also holds with the experimental results shown by Chandler et
al. [COJ15] in their skipping time steps test where the error does
not increase when intermediate time steps are removed. We make
use of the estimate (7) so that we can approximate the error for in-
dividual pathlines. We also explore this result further in Section 5.
This error bound also supports the results shown by Agranovsky et
al. [ACG∗14] which demonstrate that storing particle trajectories
rather than instantaneous velocities for the same number of time
steps gives smaller advection error since advection using numeri-
cal integration has both spatial and temporal error.

5. Experimental Results

We present the results of characterizing the advection error com-
pared to different flow field characteristics. The error is the distance
from the advected particle to the simulation particle. We ran these
tests on 3 different data sets. The first is a mixing simulation of a
box filled with fluid and two co-rotating blades and has 2,097,152
particles. The second data set has 2,097,152 particles and simulates
two fluid spheres hanging in the air that drop onto a planar surface.
The particle movement is uniform until the impact when the fluid
begins to splash around. The third data set has a heating mecha-
nism at the bottom of a fluid-filled box with 124,768 particles. As
the fluid is heated the bottom particles accelerate upward and cooler
particles fall back down causing a high velocity jet in the center.
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Figure 1: This chart shows the average error at each time step
when skipping time steps in between. For this test we use every n-th
time step where n doubles for each successive run of the experi-
ment. The results show that the error at a particular time step tends
to be lower when fewer advection steps were taken to get there.

5.1. Error with Skipping Time Steps

We extend the experiment by Chandler et al. to measure the error
when skipping time steps to further analyze the results. We advect
particles using every n-th time step and only measure the error at
time steps that were used. See Figure 1. The results show that the
error at a given time step tends to decrease when there were fewer
advection steps taken between the initial and the given time step.
This fits with the theoretical analysis which shows that the local
truncation error (i.e. the error when advecting between two given
time steps) is only dependent on the spatial resolution and not the
temporal resolution. When advecting a particle using all time steps
between the start and end point, the error tends to increase with
each time step since it has both the local spatial error and the accu-
mulated error from previous advection steps as shown in the global

error approximation (Eq. 7). This result shows that interpolation-
based pathline tracing is particularly useful when the goal is to an-
alyze where particles travel after a long time period since only the
time steps of interest are needed to get an accurate result, whereas
with a numerical integration advection process the accuracy of the
result is highly dependent on the temporal resolution.

Figure 2: These density plots show the relationship between the
stretching value and the error in the heating and mixing data sets.
After each advection step we re-seed the particles at the locations
of the simulation particles so that we can measure the error af-
ter a single step for each time step in the simulation. A ratio of
one means no stretching in the local neighborhood. In these charts
higher error is correlated with higher stretching values.

5.2. Error with Flow Divergence

For this experiment we observe the error with respect to the diver-
gence in the flow field. We approximate divergence as a stretching
value s, the ratio between the particle separation in the intial time
step and the separation in the subsequent time step:

s = max
Pi

|P(t j+1)−Pi(t j+1)|
|P(t j)−Pi(t j)|

(8)

where P is the reference simulation particle where we have seeded
a tracer particle, and the Pi are the neighboring particles. With this
stretching metric a value of 1 means that there was no divergence
in the flow field. Higher values indicate larger divergence in the
neighborhood. In Figure 2 the results show that an increase in error
is correlated with an increase in the stretching measurement.

Figure 3: These density plots compare the error with the length
of the reference trajectory after a single advection step. After each
advection step we re-seed the particles at the locations of the sim-
ulation particles so that we do not measure the effects of error ac-
cumulated due to multiple advection steps. We can see some corre-
lation between the trajectory length and the error for the heat data
set, but not much correlation for the mixing simulation.
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Figure 4: These density plots show the results of comparing the neighborhood change to the average error. The neighborhood change is the
sum of the particles that left the initial neighborhood and new particles that entered the neighborhood after the advection steps. The first
chart shows the neighborhood change after a single advection step, while the second shows the neighborhood change after 10 advection
steps in the heat data set. The third chart shows the neighborhood change in the drop data set for time steps 25 to 31 which is around the
start of the fluid impact with the ground plane. The neighborhood change is much higher after many advection steps.

5.3. Error with Trajectory Length

We examine the advection error compared to the length of the ref-
erence trajectory after a single advection step. We expected that
longer trajectories would be correlated with higher error because
particles that do not move much would have a lower probability
of having a high error due to the interpolation process. We do see
some correlation between trajectory length and error; however, it is
not as strong as the correlation with stretching. This can be seen in
Figure 3. The trajectory length is not a generally useful predictor of
error since it is possible to have regions with fast moving particles
that all move in the same direction. In this case the interpolation
error would still be low, but the trajectory lengths would be long.

5.4. Error with Neighborhood Change

Interpolation-based pathline tracing updates the particle neighbor-
hood after each advection step. Ideally, the particle neighborhood
would stay the same; however, due to convergence and divergence,
the neighborhood surrounding the tracer may change between time
steps. We look at how many particles left the neighborhood and
how many new ones entered in Figure 4. We see some correlation
between neighborhood change and error. We look at the neighbor-
hood change after multiple advection steps since particle neighbor-
hoods change very little after a single advection step with a small
time step length. After a certain point, if the entire neighborhood is
different than the original one, then we do not expect this metric to
show a strong correlation with error since the error can continue to
grow in later time steps but neighborhood change is limited based
on the number of initial neighbors. We expect that pathlines with
higher error have very different neighborhoods than the initial ones
since this indicates a high amount of divergence and convergence.

5.5. Relationship to Theoretical Error

To compute real values for the theoretical error, we must estimate
the derivative ∇(Ft j

t j−1
(ζi)l−Ftj−1

t j−1
(ζi)l). This is not a trivial problem

for scattered data. We approximated this value using moving least
squares [Lev98]. We tried a first order and a second order approxi-
mation. The first order approximation gave smaller values than the
observed error, while the second order approximation had a larger
range of values. We found that there was no correlation between the

Figure 5: This density plot shows the relationship between the T
values approximated using moving least squares and the advection
error in the mixing simulation. We do not see a correlation between
the T values and the error using this approximation method.

computed T values from the local truncation and the observed er-
ror from the advection results as shown in Figure 5. We believe that
our theoretical error estimate is still a good bound on the error, but
in order to use it in practice we need a better way to approximate
the true value of the derivative in the local neighborhood.

6. Conclusion

We have shown a number of ways to characterize the advection
error using interpolation-based pathline tracing. We found that the
error is roughly correlated with divergence in the flow field. We
showed that the error for advecting a pathline directly from the ini-
tial time step to a later time step is generally less than advecting
it using all time steps in between. That can be seen, because the
local truncation error is smaller than the global one according to
our theoretical error analysis. Further, the stretching is correlated to
the factor ∇(Ft j

t j−1
(ζi)l −Ft j−1

t j−1
(ζi)l) in Equation 5, which describes

the change in the displacement vectors over time. Our theoretical
bounds on the advection error can be used to identify which ar-
eas of the flow field are most prone to advection error. In future
work we would like to investigate different ways to compute a bet-
ter approximation of T so that we can visualize the theoretical error
estimate for real data sets. We would like to further explore how
the correlation between the stretching and advection error and the
neighborhood change and advection error can be used to modify
the interpolation-based pathline tracing method to reduce the error.
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