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Abstract
In many planning applications, a computational model is used to make predictions about the effects of management or engi-
neering decisions. To understand the implications of alternative scenarios, a user typically adjusts one or more of the input
parameters, runs the model, and examines the outcomes using simple charts. For example, a time series showing changes in
productivity or revenue might be generated. While this approach can be effective in showing the projected effects of changes to
the model’s input parameters, it fails to show the mechanisms that cause those changes. In order to promote understanding of
model mechanics using a simple graphical device, we propose dynamic change arcs. Dynamic change arcs graphically reveal
the internal model structure as cause and effect linkages. They are signed to show both positive and negative effects. We imple-
mented this concept using a species interaction model developed for fisheries management based on a system of Lotka-Volterra
equations. The model has 10 economically important fish species and incorporates both predation and competition between
species. The model predicts that changing the catch of one species can sometimes result in changes in biomass of another
species through multi-step causal chains. The dynamic change arcs make it possible to interpret the resulting complex causal
chains and interaction effects. We carried out an experiment to evaluate three alternative forms of arcs for portraying causal
connections in the model. The results show that all linkage representations enabled participants to reason better about complex
chains of causality than not showing linkages. However, none of them were significantly better than the others.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User Interfaces—
Interactions Styles

1. Introduction

In more and more design applications, a model is used to make pre-
dictions and its results are displayed graphically, usually by means
of one or more time series plots. The classic example of this is the
business model spreadsheet. Such models use various parameters
representing costs of production, product marketing, distribution,
and so on to generate a profit forecast projected out several years.
These models enable business executives to explore what if sce-
narios. For example, what if the cost of raw materials rises by a
certain amount? What if a lower rate of interest can be obtained for
a business loan? Changing a single number in the spreadsheet can
produce a new forecast. VisiCalc, the first “killer app” for personal
computers, supported exactly this kind of activity and is often cred-
ited with the rise of the personal computer in business [Ram80].

Spreadsheet applications like VisiCalc and its successor Mi-
crosoft Excel are powerful because they show the effect of changing
parameter values instantaneously, but spreadsheets fail to show the
reasons for those changes. The only way of discovering the chain
of causal linkages that led to a particular outcome is to delve into
the spreadsheet code. Our work aims to provide a partial solution to
this problem in the form of dynamic change arcs. These are graphi-
cal devices designed to show internal model linkages and enable the

user to understand both the consequences of a change in a model
parameter and the causal linkages leading to those consequences.
We implemented our design ideas in an interactive visualization
of an ecosystem-based model built for fisheries management and
we carried out a study where participants used this visualization to
produce explanations of the effects of changes in fishing practice.

2. Prior research

There have been a number of different approaches to the repre-
sentation of causality for data visualization. It is useful to classify
these according to how causal linkages are displayed and how the
effects are shown in response to changes of the model parameters.
(A summary of the following review is given in Table 1.)

Work by Igarishi et al. [IMCZ98] aimed to reveal the causal net-
work structure that is implicit in many spreadsheet models. When
the user moused-over a spreadsheet cell, lines emerged to show in-
coming and outgoing relationships with other cells. This provided
a kind of interactive data flow graph. The size of the effect was
shown by a change in the numbers in destination cells, or by bars
resembling those found in bar graphs.

The Influence Explorer and the Attribute Explorer were experi-
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Paper Representation of causal link-
ages

Representation of
causal effects

Evaluation

Kadaba et al. 2007
[KIL07]

Lines with animated ‘bullets’;
size is effect strength

Target node changes
size

Both simple and complex
relations

Igarashi et al. 1998
[IMCZ98]

Animated lines linking spread-
sheet cells; magnitude not shown

Change in numbers in
cells

None

Ware et al.
1999 [WNB99]

Animated waves or balls Target nodes change
size instantaneously

Temporal contingencies;
simple and causal effects

Zapata-Rivera et al.
1999 [ZRNG99]

Animated temporal order; lines
connecting cells on a spreadsheet

Size or color change None

Tweedie et al. 1995
[TSDS95]

None Distributions of out-
comes change

None

Neufeld et al. 2006
[NSK06]

Animated links: moving waves or
streaks of light

Size or color change None

Neufeld and Kristtorn
2005 [NK05]

Node link diagram: fixed-width
links

Distribution change Modes of representation

Eberlein and Peterson
1992 [EP92]

Node link diagram: fixed-width
links

Time series plots None (commercial soft-
ware)

Table 1: Summary of approaches to the representation of causal models.

mental visualization tools intended to help with complex interactive
design decisions [TSDS95, TSWB94]. They linked a visualization
with a Monte Carlo simulation to show effects of design decisions.
The user was able to adjust design parameters using sliders and see
instantly how the different simulations performed. The results were
expressed with distribution plots showing the likelihood of different
outcomes. Other work by Neufeld and Kristtorn [NK05] showed
changes in distributions according an underlying causal statistical
model based on theoretical, not Monte-Carlo, distributions.

Several studies have examined ways of expressing causal link-
ages and effects so they are perceptually immediate. The idea is
that people will literally see causal effects as opposed to having to
reason about them. These studies, inspired by the work of Michotte
and Thines [MT63], leverage perceptual effects where the motion
of one object is seen to cause some change in another. They showed
that viewers strongly perceive causality when viewing a shape that
begins to move after being contacted by another moving shape, as
when a billiard ball strikes another. Their series of experiments on
the temporal contingencies of the percept found that if there was
more than a 200 msec delay between the contact and the second
object moving, the perception of causality was lost. This has been
incorporated into systems that use animated node-link diagrams
to convey causal chains [WNB99, NSK06]. One common causal
metaphor is an animated ball, which is emitted from one node and
travels to another target node, ‘causing’ it to vibrate, increase in
size, or change color. This is used to indicate the causal effect of
one variable, represented by the first node, on another variable, rep-
resented by the second node. Kadaba et al. [KIL07] compared static
and animated causal visualizations. In their static design, positive
influences were indicated with a plus sign (+) glyph and negative
influences were indicated a minus sign (−) glyph attached to the
link between two entities in the network. In the animated version,
the size of an animated round glyph which they called a “bullet”
represented the magnitude of the influence on the recipient node.
As a bullet hit a recipient node, it grew or shrank to show a pos-

itive or negative effect. They found that subjects could interpret
animated and static representations equally accurately, but formed
responses slightly quicker with animations. Ware has shown that
multi-touch screens can be used to convey more complex causal
effects such as causal enhancements, effect reductions, and causal
blocking effects [War13].

Although the Michotte-inspired animated methods can convey
causal effects immediately and can be interpreted with little or no
training, there are problems using the method in more complex
causal networks [War13]. Consider two nodes with a single causal
link, where clicking on one node causes a ball to be emitted. The
second node expands after being struck by this ball to signal a pos-
itive causal effect, but the second node has to be reset to its original
size to see this effect again. A complex causal network can be rep-
resented by a directed graph, with both positive and negative causal
effects, but multiple causal pathways of different lengths may ter-
minate on a particular node, so arrival times will not be synchro-
nized. Resets could occur at confusing intervals. Additionally, the
Michotte-based causal methods are ill-suited to showing causal ef-
fects resulting in a changing trend, as in a business model, because
they only show effects by transient changes in nodes.

Vensim, a commercial tool for visualizing and analyzing sim-
ulation results, supports an interactive activity the authors called
“causal tracing” [EP92]. It allows users to view multiple time se-
ries plots corresponding to causal influences on a particular effect
and thereby infer the causal chain. However, the time series plots
are not integrated with the causal influence graph and they do not
change in real time when model parameters are adjusted.

2.1. Key design ideas

Our design goal was to make it possible to see the effects of a man-
agement decision and to understand the causal chains that resulted
in those effects. We chose to abandon the ideal of using Michottian

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

312



C. St. Jean, C. Ware, & R. Gamble / Dynamic Change Arcs to Explore Model Forecasts

causality perception; instead we have perceptually instantaneous
feedback in the form of time series plots showing forecasts that
are recomputed in real time in response to adjustments of model
parameters using sliders. Time series plots are connected by arc di-
agram links designed to graphically indicate the amount of change
relative to the status quo. We call these links ‘dynamic change arcs.’
Before giving the design details, it is useful to understand the ap-
plication domain which motivated this research.

2.2. The fisheries model

Our interactive visualization was driven by a food web model de-
veloped for fisheries management which simulates predator-prey
interactions and competition between several commercially im-
portant species. The model is a system of Lotka-Volterra equa-
tions [Lot26, Vol26]. Lotka-Volterra equations are a pair of differ-
ential equations where a change in one species is a function of the
biomass of another. For example, the rate of change in a fox popu-
lation might depend on the number of rabbits and the rate of change
of the rabbit population might depend inversely on the number of
foxes. The equations are of the form δA/δt = A(p−q ·B), meaning
the change in species A over time is given by the mass of species
B multiplied by a scaling value q, which represents how much one
species eats or competes with another.

The fisheries model underlying our visualization is MS-PROD,
which is a multispecies production model developed by NOAA sci-
entists Gamble and Link [GL09]. This model is a system of equa-
tions where the change in biomass of one species is a function of
two kinds of interaction with other species in the model. One kind
of interaction is a predator prey-relationship (given by α in the
model); the other interaction is competition between species (given
by β). Competition accounts for cases when two species may com-
pete with one another for a resource such as habitat space or food
sources. Another term in the model is harvesting, by humans means
such as fishing. The goal of fisheries management is to obtain a
situation where harvesting is sustainable over a long period. The
MS-PROD model is the following formula:

dNi

dt
= ri︸︷︷︸

Growth
rate

Ni


1− Ni

KG︸ ︷︷ ︸
Prevents
infinite
growth

−

g

∑
j=1

βi jNj

KG
−

G

∑
j=1

βi jNj

Kσ −KG︸ ︷︷ ︸
Competition


−Ni

P

∑
j=1

αi jNj︸ ︷︷ ︸
Predation

− HiNi︸︷︷︸
Harvest

(1)

where N is species biomass, βi j represents competition between
species i and species j, and αi j, represents predation of species i on
species j. Hi is the harvest effort on species i. The K terms represent
carrying capacity, the maximum population of the species in the
absence of competition, predation, or harvest.

10 species of fish interact with each other in the version of
MS-PROD we used. The model authors provided us with a sam-
ple parameter file that listed these 10 species chosen from the

Northeast United States Continental Shelf Large Marine Ecosys-
tem (NEUSLME), listed here by functional group, which is a set of
species that share habitat, ecosystem function, and other character-
istics:

• Elasmobranchs: skates, spiny dogfish
• Flatfish: windowpane, winter flounder, yellowtail flounder
• Groundfish: cod, haddock, redfish
• Small pelagics: herring, mackerel

It should be noted that this parameter file has only been tuned
roughly to the NEUSLME to provide a set of interesting interac-
tions to test this project’s ability to visualize the cause and effect
linkages between species. Thus, it should not be considered to de-
scribe the real world system—only whether the Dynamic Change
Arcs effectively display outputs from time series that are linked by
causal relationships.

The MS-PROD model runs simulations for 30 years with an an-
nual time step to predict individual biomasses.

3. Detailed design

There are three critical elements in our design: time series plots
to show forecast trends, arcs to show model linkages, and inter-
active sliders to allow the user to change parameter values. These
are illustrated together in Figure 1. A critical part of our design
is a graphical device known as an “arc diagram”. This name was
coined by Wattenberg, though the method was invented earlier;
Knuth used arc diagrams to illustrate interaction of characters in
a novel [Wat02, Knu93]. While the arc diagram may fail to prop-
erly depict the structure of a network, Heer et al. point out its one-
dimensionality allows for other features to be easily displayed near
the nodes [HBO10]. This property is useful in our design since
it fits well with a stack of time series plots. The time series plots
stand for nodes in the food web network, with each plot represent-
ing a single species. The time series plots are organized into four
functional groups, each distinguished using a different color. The
four interactive sliders control the fishing effort for each functional
group. By adjusting a slider, the amount of fishing effort for a par-
ticular functional group can be changed and the results visualized.

3.1. Parameter adjustment sliders

The sliders on the left-hand side of the interface panel in Figure 1
enable users to adjust the amount of fish caught in different func-
tional groups. In reality, fishing for a particular group of fish would
result in by-catch of other species, but the MS-PROD model does
not account for by-catch. Underneath each slider, a colored rect-
angle indicates differences from the baseline effort settings. Blue
indicates the effort value was increased since the baseline was set,
while red indicates the effort value was decreased. In the exam-
ple shown, the effort for the elasmobranch group was doubled. The
time series plots show the resulting forecast changes in the biomass
of the entire set of species according to the model. When a slider is
adjusted, the model is recomputed and the time series are updated
in real time.
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Figure 1: The overall design is illustrated.

3.2. Time series plots

The time series plots show 30 year projections based on the model.
Since the biomasses of the species varies considerably, each plot
has a different y-axis scale. Absolute biomass indicators (shown in
the background of the time series plots in Figure 1) were introduced
to make comparison across species possible and to prevent the as-
sumption that the plots have similar scales. These indicators show
the absolute biomass of the population as the area of a circle and
are drawn at five-year intervals across the 30 year time span.

3.3. Visualization of change

To understand and compare decisions, modelers and other stake-
holders need to be able to see changes in biomass resulting from
changes in the fishing effort. We designed two alternatives to repre-
sent time series change from a baseline. The first, seen in Figure 2a,
shows the baseline forecast as a dotted gray line and the current
forecast as a heavier colored line with dots at yearly intervals. The
second, shown in Figure 2b, is a shaded area originating from the
curve of the current forecast. The shading diminishes in opacity
as it approaches the curve of the baseline forecast. Stakeholders in
early evaluations preferred the shaded version, so it became part of
the standard presentation.

3.4. Interspecies relationships

The MS-PROD model is a system of Lotka-Volterra equations, so
explaining, as opposed to simply showing, the results of a particu-
lar parameter change is a matter of making these parameter values

(a) The status quo time series is given by the gray line. The
colored, dotted line indicates the new forecast.

(b) The status quo time series is given by the bottom of the
shaded portion.

Figure 2: Alternative representations of ‘before’ and ‘after’ time
series.

explicit. This is the role of the arcs in Figure 1. These relationships
can be stated in terms of cause and effect. For example, increasing
the catch of elasmobranchs (spiny dogfish and skates) causes a de-
crease in the population of these species. A secondary effect is that
winter flounder and yellowtail flounder populations increase since
they face less competition from the elasmobranchs.

Two colors were used for the arcs to differentiate the types of
model interaction terms: orange for predation and blue for competi-
tion. Both predation and competition relationships are directed and
three cues indicate this in the non-animated versions. First, we used
fading opacity based on Holten and van Wijk’s recommendation of
dark-to-light shading along each arc [HvW09]. Second, triangular
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marks are drawn in the middle of the arcs to point from the source
species to the recipient species. Third, our arcs follow a clockwise
direction; arcs on the right-hand side are all directed downward,
while arcs on the left-hand side go upward. This serves both to rein-
force directionality and to provide a principled way of decluttering
the diagram. Without this left-right separation, it would be difficult
to show reciprocal relationships between species. The directional-
ity can also be indicated with animation, where the color of the arc
alternates with gray and the stripes of colors travel from the source
species (e.g., predator) to the recipient species (e.g., prey).

We created three alternative versions of the arcs to show the un-
derlying model parameters: static arcs, dynamic arcs, and dynamic
arcs with animation.

Static. With the static style of the arcs, all arcs are shown always,
as shown in Figure 1. The width of an arc corresponds to the magni-
tude of the relationship as defined by the predation or competition
term in the model. The downside is that viewing all arcs at once
can be overwhelming as the display becomes somewhat cluttered.

In addition, reasoning about cause and effect relationships using
the static arcs can be difficult. The effect of a change in the amount
of fishing of species A on species B that it eats (or competes with)
is weighted by the amount of change in A, as well as the biomass
of the two species. Thus, although the static arc view provides the
information needed to understand causal chains, the reasoning pro-
cess is complex.

Dynamic. Dynamic arcs, illustrated in Figure 3, were motivated
by the need to simplify reasoning about causal chains occurring
in the model. Another benefit is they reduce the visual clutter cre-
ated by the static arcs. The width of dynamic arcs depends on the
size of the causal influence. If there is no change in effect due to a
parameter change, the arcs do not appear. Dynamic arcs are a sim-
plification of the effects of an iterative process; in a forecast, the
model is recomputed at yearly intervals and the biomass values of
a species and its influence on other species has 30 different values
in a 30 year forecast. The arcs can represent only a single value.

In our final design, the width of each directed arc is proportional
to a weight wi j: the effect of the jth species on the ith species. In
the case of predation,

wi j = αi j ·100000 · (N′ j,30 −Nj,30)/(Ni,0 +100000) (2)

where αi j represents the predation of species j on species i, Ni,0
represents the initial biomass of the prey species, Nj,30 is the
biomass at year 30 for the predator species according to the cur-
rent forecast, and N′ j,30 is the biomass at year 30 for the predator
species according to the baseline forecast. If the predator species
biomass at year 30 did not change between the forecasts, then
(N′ j,30 − Nj,30) equals zero, resulting in a w of zero, so the arc
will not be drawn. In other words, the link width is given by the
size of the predation coefficient, weighted by the overall change
in biomass of the predator species over 30 years and inversely
weighted by the biomass of the prey species at the start of the fore-
cast.

In the MS-PROD model, the rate of change in a species is pro-
portional to its own biomass. In this regard, a somewhat subtle point
must be made; in a visual sense the effects on a prey species are in-

versely weighed by the biomass of the prey, simply because of the
different scales used for the different time series plots. In Figure 3,
for example, the change in biomass of haddock appears small rel-
ative to the change in biomass of mackerel, but the actual absolute
change in haddock is more than twice as large since there are far
more haddock. Because of the different scales, what we perceive in
the time series plots is a relative change, not an absolute change.
Back in Equation 1, Ni is a multiplier for all terms on the right-
hand side, but we can eliminate it by dividing both sides by Ni to
give the relative change dNi/Nidt. The bottom term Ni,0 in Equa-
tion 2 is there solely to prevent arcs getting too wide in the case of
the largest prey species. It has a small effect for the other species.

Width values calculated using Equation 2 can be either positive
or negative. Both competition and predation relationships inhibit
the growth of the recipient species since the source species either
consumes the recipient species itself or its resources. If there is
an increase in a predator species’ biomass, the effect on a prey
species will be negative and their population will decline. The re-
verse is true: if a predator species decreases, then the prey species
will benefit and its population will increase. We chose to use plus
signs (+) for the cases where w is negative—i.e., when the source
species declines between forecasts which is “good” for the recipient
species—and minus signs (−) for the cases where w is positive—
i.e., when the source species increases between forecasts which is
“bad” for the recipient species—as Kadaba et al. used in their static
causal visualizations [KIL09]. Plus signs were drawn in black;
minus signs were drawn in white outlined in black. Several sign
glyphs are drawn along each arc to allow the user to determine the
arc’s signage.

The dynamic links between the harvest sliders and the harvested
species behave similarly. Their width is a function of the change in
harvest from the baseline.

Figure 3 shows the dynamic arc representation for the same sce-
nario given in Figure 1. There has been an increase in fishing effort
on the functional group of elasmobranch from 1.0 to 2.0. Spiny
dogfish and skates decrease as a result of the increase in fishing ef-
fort, as is indicated by the shaded area between the baseline forecast
and the current forecast. There are also secondary effects: spiny
dogfish strongly predate cod, so the cod population increases, as
indicated by the (+) signs on the orange arc from spiny dogfish to
cod. Elasmobranchs compete with winter flounder and yellowtail
flounder, causing a population increase for the flounders. However,
windowpane population declined as a result of the increase in cod,
since windowpane and cod compete. While these results may not
be a true representation of the NEUSLME, the dynamic arcs allow
the modeler to immediately see if a cause and effect relationship is
modeled as desired with the set of parameters provided.

Dynamic with animation. The final style for the arcs is dynamic
with animation. All of the rules concerning non-animated dynamic
arcs apply. Additionally, the plus signs (+) or minus signs (−)
travel from the source species (e.g., the predator) to the recipient
species (e.g. the prey). Also, the color of the arc—orange or blue—
alternates with the color gray. These alternating stripes of colors
also travel along the arc to give a stronger indication of the direc-
tionality.
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Figure 3: The design illustrated with dynamic arcs to show causal relationships between the species. Arc thickness reflects the magnitude of
the causal effect.

4. Evaluation

We were interested in how different arc visualization alternatives
enhance a user’s understanding of the complex relationships be-
tween the fish species and the effects of those relationships as a
result of changes in fish catch. Our hypothesis was that there would
be benefits to showing causal arcs and these benefits would be
greater for the dynamic change arcs. To test this, we conducted
a user study to measure the performance of different arc depiction
alternatives.

4.1. Method

In our study, participants manipulated a dynamic slider to change
the fish harvest for a functional group, then reported on the re-
sulting changes in biomass by answering a series of standardized
questions. First, they were asked to explain how the harvest change
affected the population forecast of a specific species. Next, they
were asked to explain the causes of that change, with questions that
ranged from straightforward to complex. An example of a simple
question would be to explain a change in a species that had declined
because the fishing effort had increased for that species. A complex
question would require the participant to explain a causal chain of
predation and/or competition. For example, under the given model
parameters, spiny dogfish (a member of the elasmobranch group)
eats cod, so increasing the catch of elasmobranchs results in a de-
crease of spiny dogfish, which in turn leads to an increase of cod.
We hypothesized that only the complex questions would benefit
from the presence of arcs.

4.2. Conditions

There were four experimental conditions.

(A) No arcs: Only the time series are displayed.
(B) Static arcs: Arcs are drawn between the time series to show

predation or competition. Each arc’s width is based on the
model coefficient defining the relationship between a pair of
species. The arcs are always shown.

(C) Dynamic arcs without animation: The arcs change in width
according to causal linkage.

(D) Dynamic arcs with animation: The arcs change in width dy-
namically and also are animated to help indicate the direction
of the relationship.

4.3. Procedure

The study was conducted at a screened-off table in a student union
building at the University of New Hampshire. A paid undergraduate
research assistant conducted the study and responses from the study
were graded by two paid undergraduate research assistants.

A between-participants design was used: each participant con-
ducted the experiment task for only one of the four conditions. The
experiment began with a brief training session which was tailored
according to the experimental condition—i.e., arcs were explained
only for conditions B, C, and D; the meaning of dynamic arcs was
explained only for conditions C and D. Feedback about the quality
of the participant’s answers was given only during training.

After training, the participant followed on screen instructions to
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manipulate one of the sliders controlling the fish catch. The par-
ticipant then answered questions about the resulting effects and the
reasons for the effects. The experiment lasted approximately fifteen
minutes.

4.4. Apparatus

We conducted the experiment using a standard Dell laptop with an
extra Dell monitor. The window with the model visualization was
maximized on the extra screen, while the window with the exper-
iment questions was maximized on the laptop screen. Participants
used the mouse to interact with the model visualization and entered
their answers using the laptop keyboard and mouse.

4.5. Participants

There were 92 participants who took part in the study, all of whom
were recruited by a poster affixed to the back of the privacy screen.
The responses of three participants were eliminated because of er-
rors in even the most basic questions, indicating a lack of under-
standing of the task. Participants were randomly assigned to the
four conditions, such that there were at least 20 in each condition,
and were rewarded with a set of pens.

No arcs Static Dyn. Dyn. &
arcs animated

Low quant. 11 10 9 10
High quant. 12 14 11 12

Table 2: The numbers of students recruited for each of the four
conditions, separated by quantitative level.

Participants reported their college at the university (e.g., engi-
neering, business, liberal arts), which we used to group them in
terms of quantitative skills. Students who reported being from the
College of Liberal Arts were placed in the “low quantitative” cat-
egory and students from any other college were placed in “high
quantitative.” Our thought was that students in fields such business,
science, or engineering were more likely to have experience read-
ing charts. We tried to obtain equal numbers in each category but
were not entirely successful. The numbers we recruited are shown
in Table 2.

4.5.1. Task

Initially, all fishing effort sliders were set to the value of one. Par-
ticipants were instructed to increase or decrease the fishing effort
of a specific functional group—e.g., “Using the sliders, double the
harvest effort on elasmobranchs.”

Next, the participants were asked to answer one or more ques-
tions of the form, “What was the effect on (fish species)?” For ex-
ample, “What was the effect on haddock?” Participants answered
this “What?” question with one of five options from a drop-down
menu:

• Increased a lot
• Increased a little
• Stayed about the same

• Decreased a little
• Decreased a lot

Finally, the user was asked, “Why? [Try to explain in no more
than three sentences.]” A large text box was provided for the par-
ticipant to type a response. If this question was the last question
in its set, then the sliders were all reset to one and a new instruc-
tion was given for the next set of questions until all questions were
answered.

As mentioned earlier, the “Why?” questions varied in difficulty.
They were designed so that the questions would fit in one of two
difficulty categories:

• First-order: These questions were simpler because they in-
volved a fish species whose biomass changed directly as a result
of increased or decreased fishing effort.

• Higher-order: These questions were harder because they in-
volved a fish species whose biomass changed as an indirect re-
sult of fishing effort change. The explanation required following
a second-order or higher causal effect.

There were three instructions for adjusting the harvest effort and
seven pairs of “What?” and “Why?” questions. All participants
were given the same instructions and asked the same questions in
the same order, regardless of condition.

For example, the participant may be instructed, “Double the har-
vest effort on elasmobranchs.” The participant would then be asked,
“(a) What was the effect on cod? (b) Why?” Answering correctly
requires looking at a second order effect: “(a) Cod increased a
lot. (b) Spiny dogfish is a type of elasmobranch, so its biomass
went down because it was being fished more. Spiny dogfish prey
on cod, so the cod biomass increased since there were less preda-
tors.” There were even more difficult questions such as, “(a) What
is the effect on haddock? (b) Why?” The correct explanation would
look something like, “(a) Haddock decreased a lot. (b) Spiny dog-
fish, which are elasmobranchs, prey on cod, so the cod biomass
increases as more spiny dogfish are fished. Cod competes with had-
dock, so as the cod biomass increases, the effect of the competition
is stronger and the haddock biomass declines.” Both of these exam-
ples fall into the higher-order difficulty category.

4.6. Results

The answers to the questions of the evaluation were graded on
a scale of zero (i.e., completely wrong) to three (i.e., completely
correct). “What?” questions, which were answered using a drop-
down, were graded automatically, while “Why?” questions were
graded by two graders. The average of the two scores was taken
and these averages were used in our analyses. The correlation coef-
ficient (Pearson’s r) between the scores assigned by the two graders
was 0.7.

The results are summarized in Figure 4. Separate ANOVAs were
run with Tukey HSD tests for each of these three types of questions
(what, first-order, and higher-order). There were no significant dif-
ferences between the four conditions for the seven “What?” ques-
tions and the three first-order “Why?” questions. However, there
was a significant effect for the four conditions with the higher-order
“Why?” questions, shown by (F [3,81] = 13.2; p< 0.001). A Tukey
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Figure 4: Mean grades for the higher-order explanations given by
study participants under the four conditions. Means of both high
and low quantitative participants are shown.

HSD test on the four conditions showed that all of the arc condi-
tions were better than the no arcs conditions. However, there were
no significant differences between the three conditions with arcs.

The effect for high versus low quantitative (F [1,81] = 1.82; p =
0.18) failed to reach significance.

4.7. Discussion

Our results suggest that using either static or dynamic arcs is bet-
ter than using no arcs at all for asking higher-order “Why?” ques-
tions about the underlying relationships between the species, while
“What?” questions could be answered even without any causal re-
lationship depiction. This was true for both high and low quanti-
tative participants. Dynamic arcs performed slightly better without
animation than with animation; perhaps participants found the ani-
mation distracting or confusing.

5. Expert feedback

Our visualization was assessed by two model developers and one
fisherman who has been a member of the New England Fishery
Management Council. The response of these three expert users was
positive. The modelers liked the ability to change fishing effort pa-
rameters and see an instantaneous result with the altered forecasts.
They appreciated that using the visualization was quicker and more
informative than the alternative of rerunning the model and graph-
ing its output in Microsoft Excel. All three users preferred dynamic
arcs over static arcs for depicting the causal relationships between
the fish species. Two of the experts admitted that the underlying
relationships and their counter-intuitive effects can confuse even
them without the aid of a visualization, despite being quite familiar
with the 10 species involved. Dynamic arcs made these complex in-
teractions much easier for them to interpret; one of them noted that
dynamic arcs “help to follow the flow [of the relationships] more
easily.” The three experts agreed that the visualization could play
an important role in promoting the use of more complex models
like MS-PROD.

6. Conclusion

The broad goal of this research has been to investigate ways of
visually representing causal chains in a complex model to allow
users to reason about why various effects occur when changes are
made to critical model parameters.

The key components of our solution are as follows:

• Sliders to dynamically change model input parameters.
• Real time recalculation of model forecasts.
• Nodes containing time series showing the forecasts and making

clear differences from some baseline forecast.
• Links showing changes in causal effects of one model compo-

nent on another as a result of a change in model parameters.

Our evaluation of the depictions of the interspecies relationships
in a fisheries model showed that having weighted causal links is su-
perior to no links for answering higher-order questions about fore-
cast changes. Domain experts preferred the dynamic change arcs
over the static arcs, but the more formal evaluation with undergrad-
uate students failed to show an improvement for this mode of rep-
resentation.

The prior work can be grouped into two categories: one where
transitory changes occur (the works shown above the double line
in Table 1), the other where they remain visible to be studied (the
works shown below the double line in Table 1). Our visualization
differs from both categories in that it shows both the before and
after views by depicting deviation from the status quo, also while
selectively displaying causal arcs that help explain that deviation.

It is pertinent to ask, how general purpose is our solution? Can
it be used in other fields such as business, economics, medicine, or
engineering? There are two major issues relating to this. First, will
it scale to more complex models? Our design combining stacked
time series plots with a dynamic arc diagram works well for 10
interacting components of a system, and this number could per-
haps be doubled and still be clear, but larger models would re-
quire a different approach. An alternative for larger causal net-
works might be to use a spring layout node-link diagram where
each node contains a much smaller time series plot. So long as in-
teractions between components only involved small subgraphs of
the network, the dynamic change arc approach would be effec-
tive in decluttering the diagram. Interactive methods where topo-
logically nearby nodes and links are enhanced (e.g., one and two
links away from a selected node) have been demonstrated to make
node-link diagrams with several hundred nodes usable for rea-
soning [WB05]. An interactive hierarchical network view using
a method such as the intelligent zoom technique could also help
with larger networks [BHDH95, SZG∗96]. Also, fisheye methods
might be used to expand the nodes and their embedded time series
plots for sub-components of a model relating to a selected node
[CCF97, GKN05]. Second, how are the arcs visually weighted to
express the model? In the case of MS-PROD, our dynamic change
arcs were a simplification of a series of interactions occurring over
30 discrete time steps. This is a relatively complex case and many
models are simpler. To use dynamic change arcs, only a function
that describes a node to node causal effect (either positive or nega-
tive) is needed. We believe many models may fit into this class, such
as the disease factor models discussed by Kadaba et al. [KIL07].
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Another limitation of our design is that dynamic change arcs are
based on the endpoint of a 30 year time series and the magnitudes
of the changes over this period. This can work well where the fore-
casts have simple monotonic trends, but if there are oscillations
up and down this simplification will necessarily fail to capture the
complexity. Nevertheless, a time series approach can show far more
detail than the simple Michotte-derived animations used to show
immediate causality [MT63, WNB99].

A more concrete goal of this research was to help the fishery
management community make informed decisions by using the
MS-PROD model through our interface. Achieving this long-term
goal would require a public unveiling of the MS-PROD model by
its authors, which unfortunately is unlikely to occur soon. On the
other hand, our visualization is already being used by the model
authors, including in several meetings and seminars they have held.
Our informal interviews with expert users has led us to believe we
have succeeded in creating an effective visualization and that the
dynamic arc version is the most informative. More widespread re-
lease will depend on validation of the model itself. In the future,
evaluation of individual components of the visualization and explo-
ration of alternative techniques could improve the product further.
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