4 results
Search Results
Now showing 1 - 4 of 4
Item A Prototype of Virtual Reality System for the Visualization, Exploration and Modeling of Huge Point Clouds(The Eurographics Association, 2018) Ortega-Donaire, José; Segura-Sánchez, Rafael Jesús; Ogáyar-Anguita, Carlos-Javier; Rueda-Ruiz, Antonio Jesús; García-Fernández, Ignacio and Ureña, CarlosThe use of specific techniques for the management and visualization of huge point clouds is necessary to solve the drawbacks of inefficiency derived from the size of the dataset and the techniques used to visualize it. This work presents a prototype of VR system for the visualization and management of extensive point clouds in 3D with the ability to edit specific points. For this, the tool incorporates multiresolution techniques, which improve the performance and efficiency of the system. The prototype also incorporates the management of the point cloud stored in an unstructured database; so the prototype can request parts of the dataset from the required fractions generated by an octree. This allows the progressive processing of 3D point clouds, which is very useful to control and visualize a large data set in real time.Item Crossmodal Perception in Immersive Environments(The Eurographics Association, 2016) Allue, Marcos; Serrano, Ana; Bedia, Manuel G.; Masia, Belen; Alejandro Garcia-Alonso and Belen MasiaWith the proliferation of low-cost, consumer level, head-mounted displays (HMDs) such as Oculus VR or Sony's Morpheus, we are witnessing a reappearance of virtual reality. However, there are still important stumbling blocks that hinder the development of applications and reduce the visual quality of the results. Knowledge of human perception in virtual environments can help overcome these limitations. In this paper, within the much-studied area of perception in virtual environments, we chose to look into the less explored area of crossmodal perception, that is, the interaction of different senses when perceiving the environment. In particular, we looked at the influence of sound on visual motion perception in a virtual reality scenario. We first replicated a well-known crossmodal perception experiment, carried out on a conventional 2D display, and then extended it to a 3D headmounted display (HMD). Next, we performed an additional experiment in which we increased the complexity of the stimuli of the previous experiment, to test whether the effects observed would hold in more realistic scenes. We found that the trend which was previously observed in 2D displays is maintained in HMDs, but with an observed reduction of the crossmodal effect. With more complex stimuli the trend holds, and the crossmodal effect is further reduced, possibly due to the presence of additional visual cues.Item Rendering and Interacting With Volume Models in Immersive Environments(The Eurographics Association, 2018) Fons, Joan; Monclús, Eva; Vázquez, Pere-Pau; Navazo, Isabel; García-Fernández, Ignacio and Ureña, CarlosThe recent advances in VR headsets, such as the Oculus Rift or HTC Vive, at affordable prices offering a high resolution display, has empowered the development of immersive VR applications. data. In this paper we propose an immersive VR system that uses some well-known acceleration algorithms to achieve real-time rendering of volumetric datasets in an immersive VR system. Moreover, we have incorporated different basic interaction techniques to facilitate the inspection of the volume dataset. The interaction has been designed to be as natural as possible in order to achieve the most comfortable, user-friendly virtual experience. We have conducted an informal user study to evaluate the user preferences. Our evaluation shows that our application is perceived usable, easy of learn and very effective in terms of the high level of immersion achieved.Item FORHHSS-TEA, Support to the Individual Work System for People With Autism Spectrum Disorder Using Virtual and Augmented Reality(The Eurographics Association, 2018) Sevilla, Javier; Vera, Lucia; Herrera, Gerardo; Fernández, Marcos; García-Fernández, Ignacio and Ureña, CarlosThe Individual Work System (IWS) is an essential element from the TEACCH program, designed by The University of North Carolina (USA), one of the most used all over the world for work with persons with Autism Spectrum Disorder (ASD). The FORHHSS-TEA project uses spatial augmented reality and virtual reality technologies, following the IWS, to help persons with ASD to develop areas where they usually have problems. In the VR version, the end-users wear virtual reality glasses and 3D scanners to detect their hands in order to interact with a virtual setting. In the AR version, participants interact with a real scenario that is augmented with projection lights in order to improve independent completion of tasks. Thus, many technologies are involved to evaluate the process: eye tracking, biosignals, and emotion recognition through facial analysis and IP cameras. By using these technologies, the concentration level and the state of the person with ASD are evaluated. In the platform, there are also pressure sensors to process the user interaction with the platform elements. The platform has been evaluated with 4 persons with ASD during 5 weeks. In this paper, it is presented the design of the platform, the session description and the results of the evaluation.