2 results
Search Results
Now showing 1 - 2 of 2
Item Map Augmentation and Sketching for Cycling Experience Elicitation(The Eurographics Association, 2024) Reljan-Delaney, Mirela; Wood, Jo D.; Taylor, Alex S.; Hunter, David; Slingsby, AidanThis work examines the use of maps for knowledge elicitation in the sphere of urban cycling. The study involved running 14 distinct workshops, each serving as a unique data collection session for a particular individual. In each workshop, the participant was provided with 12 different renditions of the geographical areas as well as drawing materials. The geographical area renditions contained regions specified by the participant as cycling locations during the preparatory correspondence. The outputs were analysed for patterns in map augmentations and thematic content in the sketches. We have found that participants engaged deeply with the map augmentation process expressing their preferences and giving new insights. Themes such as connectivity, scenic beauty, and temporality emerged prominently from the analysed data, shedding light on the subjective experiences and preferences of urban cyclists.Item Does Empirical Evidence from Healthy Aging Studies Predict a Practical Difference Between Visualizations for Different Age Groups?(The Eurographics Association, 2024) Shao, Shan; Li, Yiran; Meso, Andrew I.; Holliman, Nicolas S.; Hunter, David; Slingsby, AidanWhen communicating critical information to decision-makers, one of the major challenges in visualization is whether the communication is affected by different perceptual or cognitive abilities, one major influencing factor is age. We review both visualization and psychophysics literature to understand where quantitative evidence exists on age differences in visual perception. Using contrast sensitivity data from the literature we show how the differences between visualizations for different age groups can be predicted using a new model of visible frequency range with age. The model assumed that at threshold values some visual data will not be visible to older people (spatial frequency > 2 and contrast <=0.01). We apply this result to a practical visualization and show an example that at higher levels of contrast, the visual signal should be perceivable by all viewers over 20. Universally usable visualization should use a contrast of 0.02 or higher and be designed to avoid spatial frequencies greater than eight cycles per degree to accommodate all ages. There remains much research to do on to translate psychophysics results to practical quantitative guidelines for visualization producers.