Search Results

Now showing 1 - 3 of 3
  • Item
    Computer Graphics and Visual Computing (CGVC): Frontmatter
    (The Eurographics Association, 2024) Slingsby, Aidan; Hunter, David; Slingsby, Aidan; Hunter, David
  • Item
    LLM-Assisted Visual Analytics: Opportunities and Challenges
    (The Eurographics Association, 2024) Hutchinson, Maeve; Jianu, Radu; Slingsby, Aidan; Madhyastha, Pranava; Hunter, David; Slingsby, Aidan
    We explore the integration of large language models (LLMs) into visual analytics (VA) systems to transform their capabilities through intuitive natural language interactions. We survey current research directions in this emerging field, examining how LLMs are integrated into data management, language interaction, visualisation generation, and language generation processes. We highlight the new possibilities that LLMs bring to VA, especially how they can change VA processes beyond the usual use cases. We especially highlight building new visualisation-language models, allowing access of a breadth of domain knowledge, multimodal interaction, and opportunities with guidance. Finally, we carefully consider the prominent challenges of using current LLMs in VA tasks. Our discussions in this paper aim to guide future researchers working on LLM-assisted VA systems and help them navigate common obstacles when developing these systems.
  • Item
    Interplay of Visual Analytics and Topic Modeling in Gameplay Analysis
    (The Eurographics Association, 2024) Moussavi, Laleh; Andrienko, Gennady; Andrienko, Natalia; Slingsby, Aidan; Hunter, David; Slingsby, Aidan
    Spatio-temporal event sequences consist of activities or occurrences involving various interconnected elements in space and time. Exploring these sequences with topic modeling is a relatively new and evolving research area. We use topic modeling to analyze football games, as an example of complex and under-explored spatio-temporal event data. A key challenge in topic modeling is selecting the most suitable number of topics for the downstream application. Selecting too few topics oversimplifies the data, merging distinct patterns, whereas selecting too many can fragment coherent themes into overlapping categories. We propose a visual analytics technique that uses dimensionality reduction on topics derived from multiple topic modeling runs, each with a different number of topics. Our technique organizes all the topics in a hierarchical layout based on their spatial similarity, making it easier to make an informed decision about selecting the most expressive set of topics that represent distinctive spatial patterns. We apply our visual analytics technique to a football dataset, illustrating how it can be used to select an appropriate set of topics for this data. We then use these topics to represent game episodes, which help us summarize game dynamics and uncover insights into the games.