Search Results

Now showing 1 - 10 of 79
  • Item
    The 3D Model Acquisition Pipeline
    (Blackwell Publishers Ltd and the Eurographics Association, 2002) Bernardini, Fausto; Rushmeier, Holly
    Three-dimensional (3D) image acquisition systems are rapidly becoming more affordable, especially systems based on commodity electronic cameras. At the same time, personal computers with graphics hardware capable of displaying complex 3D models are also becoming inexpensive enough to be available to a large population. As a result, there is potentially an opportunity to consider new virtual reality applications as diverse as cultural heritage and retail sales that will allow people to view realistic 3D objects on home computers.Although there are many physical techniques for acquiring 3D data-including laser scanners, structured light and time-of-flight-there is a basic pipeline of operations for taking the acquired data and producing a usable numerical model. We look at the fundamental problems of range image registration, line-of-sight errors, mesh integration, surface detail and color, and texture mapping. In the area of registration we consider both the problems of finding an initial global alignment using manual and automatic means, and refining this alignment with variations of the Iterative Closest Point methods. To account for scanner line-of-sight errors we compare several averaging approaches. In the area of mesh integration, that is finding a single mesh joining the data from all scans, we compare various methods for computing interpolating and approximating surfaces. We then look at various ways in which surface properties such as color (more properly, spectral reflectance) can be extracted from acquired imagery. Finally, we examine techniques for producing a final model representation that can be efficiently rendered using graphics hardware.
  • Item
    Artistic Surface Rendering Using Layout of Text
    (Blackwell Publishers Ltd and the Eurographics Association, 2002) Surazhsky, Tatiana; Elber, Gershon
    An artistic rendering method of free-form surfaces with the aid of half-toned text that is laid-out on the given surface is presented. The layout of the text is computed using symbolic composition of the free-form parametric surface S(u, v) with cubic or linear Bezier curve segments C(t) = cu (t), cv (t), comprising the outline of the text symbols. Once the layout is constructed on the surface, a shading process is applied to the text, affecting the width of the symbols as well as their color, according to some shader function. The shader function depends on the surface orientation and the view direction as well as the color and the direction or position of the light source.
  • Item
    Modeling Surperspective Projection of Landscapes for Geographical Guide-Map Generation
    (Blackwell Science Ltd and the Eurographics Association, 2002) Takahashi, Shigeo; Ohta, Naoya; Nakamura, Hiroko; Takeshima, Yuriko; Fujishiro, Issei
    It is still challenging to generate hand-drawn pictures because they differ from ordinary photographs in that they are often drawn as seen from multiple viewpoints. This paper presents a new approach for modeling such surperspective projection based on shape deformation techniques. Specifically, surperspective landscape images for guide-maps are generated from 3D geographical elevation data. Our method first partitions a target geographical surface into feature areas to provide designers with landmarks suitable for editing. The system takes as input 2D visual effects, which are converted to 3D geometric constraints for geographical surface deformation. Using ordinary perspective projection, the deformed shape is then transformed into a target guide-map image where each landmark enjoys its own vista points. An algorithm for calculating such 2D visual effects semi-automatically from the geographical shape features is also considered.
  • Item
    Geometric Snakes for Triangular Meshes
    (Blackwell Publishers, Inc and the Eurographics Association, 2002) Lee, Y.; Lee, S.
    Feature detection is important in various mesh processing techniques, such as mesh editing, mesh morphing, mesh compression, and mesh signal processing. In spite of much research in computer vision, automatic feature detection even for images still remains a difficult problem. To avoid this difficulty, semi-automatic or interactive techniques for image feature detection have been investigated. In this paper, we propose a geometric snake as an interactive tool for feature detection on a 3D triangular mesh. A geometric snake is an extension of an image snake, which is an active contour model that slithers from its initial position specified by the user to a nearby feature while minimizing an energy functional. To constrain the movement of a geometric snake onto the surface of a mesh, we use the parameterization of the surrounding region of a geometric snake. Although the definition of a feature may vary among applications, we use the normal changes of faces to detect features on a mesh. Experimental results demonstrate that geometric snakes can successfully capture nearby features from user-specified initial positions.
  • Item
    A Solid Model Based Virtual Hairy Brush
    (Blackwell Publishers, Inc and the Eurographics Association, 2002) Xu, Songhua; Tang, Min; Lau, Francis; Pan, Yunhe
    We present the detailed modeling of the hairy brush used typically in Chinese calligraphy. The complex model, which includes also a model for the ink and the paper, covers the various stages of the brush going through a calligraphy process. The model relies on the concept of writing primitives, which are the smallest units of hair clusters, to reduce the load on the simulation. Each such primitive is constructed through the general sweeping operation in CAD and described by a NURBS surface. The writing primitives dynamically adjust themselves during the virtual writing process, leaving an imprint on the virtual paper as they move. The behavior of the brush is an aggregation of the behavior of all the writing primitives. A software system based on the model has been built and tested. Samples of imitation artwork from using the system were obtained and found to be nearly indistinguishable from the real artwork.Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Methodology and Techniques]: Interaction techniques I.3.5 [Computational Geometry and Object Modeling]: Physically based modeling I.3.4 [Graphics Utilities]: Paint systems
  • Item
    Slow Growing Subdivision (SGS) in Any Dimension: Towards Removing the Curse of Dimensionality
    (Blackwell Publishers, Inc and the Eurographics Association, 2002) Pascucci, V.
    In recent years subdivision methods have been one of the most successful techniques applied to the multi-resolution representation and visualization of surface meshes. Extension these techniques to the volumetric case would enable their use in a broad class of applications including solid modeling, scientific visualization and mesh generation. Unfortunately, major challenges remain unsolved both in the generalization of the combinatorial structure of the refinement procedure and in the analysis of the smoothness of the limit mesh.In this paper we mainly tackle the first part of the problem introducing a subdivision scheme that generalizes to 3D and higher dimensional meshes without the excessive vertex proliferation typical of tensor-product refinements. The main four qualities of our subdivision procedure are: (i) the rate of refinement does not grow with the dimension of the mesh, (ii) adaptive refinement of the mesh is possible without introducing special temporary cell decompositions, (iii) the cells of the base meshes can have virtually unrestricted topology, and (iv) 'sharp' features of different dimensions can be incorporated naturally.We use a narrow averaging mask that is applied to the vertices of the mesh and/or to eventual functions defined on the mesh. The general study of the limit smoothness of the approach requires new analysis techniques that are beyond the scope of this paper.Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and object representations. Volumetric meshes, recursive subdivision methods.
  • Item
    Eurographics 2001
    (Blackwell Publishers Ltd and the Eurographics Association, 2002)
  • Item
    Hardware Accelerated Interactive Vector Field Visualization: A level of detail approach
    (Blackwell Publishers, Inc and the Eurographics Association, 2002) Bordoloi, Udeepta; Shen, Han-Wei
    This paper presents an interactive global visualization technique for dense vector fields using levels of detail. We introduce a novel scheme which combines an error-controlled hierarchical approach and hardware acceleration to produce high resolution visualizations at interactive rates. Users can control the trade-off between computation time and image quality, producing visualizations amenable for situations ranging from high frame-rate previewing to accurate analysis. Use of hardware texture mapping allows the user to interactively zoom in and explore the data, and also to configure various texture parameters to change the look and feel of the visualization. We are able to achieve sub-second rates for dense LIC-like visualizations with resolutions in the order of a million pixels for data of similar dimensions.Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: Applications
  • Item
    Using Perceptual Texture Masking for Efficient Image Synthesis
    (Blackwell Publishers, Inc and the Eurographics Association, 2002) Walter, Bruce; Pattanaik, Sumanta N.; Greenberg, Donald P.
    Texture mapping has become indispensable in image synthesis as an inexpensive source of rich visual detail. Less obvious, but just as useful, is its ability to mask image errors due to inaccuracies in geometry or lighting. This ability can be used to substantially accelerate rendering by eliminating computations when the resulting errors will be perceptually insignificant.Our new method precomputes the masking ability of textures using aspects of the JPEG image compression standard. This extra information is stored as threshold elevation factors in the texture's mip-map and interpolated at image generation time as part of the normal texture lookup process. Any algorithm which uses error tolerances or visibility thresholds can then take advantage of texture masking. Applications to adaptive shadow testing, irradiance caching, and path tracing are demonstrated.Unlike prior methods, our approach does not require that initial images be computed before masking can be exploited and incurs only negligible runtime computational overhead. Thus, it is much easier to integrate with existing rendering systems for both static and dynamic scenes and yields computational savings even when only small amounts of texture masking are present.Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture
  • Item
    Virtual Visual Servoing: a framework for real-time augmented reality
    (Blackwell Publishers, Inc and the Eurographics Association, 2002) Marchand, Eric; Chaumette, Francois
    This paper presents a framework to achieve real-time augmented reality applications. We propose a framework based on the visual servoing approach well known in robotics. We consider pose or viewpoint computation as a similar problem to visual servoing. It allows one to take advantage of all the research that has been carried out in this domain in the past. The proposed method features simplicity, accuracy, efficiency, and scalability wrt. to the camera model as well as wrt. the features extracted from the image. We illustrate the efficiency of our approach on augmented reality applications with various real image sequences.