Search Results

Now showing 1 - 6 of 6
  • Item
    BI‐LAVA: Biocuration With Hierarchical Image Labelling Through Active Learning and Visual Analytics
    (Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Trelles, Juan; Wentzel, Andrew; Berrios, William; Shatkay, Hagit; Marai, G. Elisabeta
    In the biomedical domain, taxonomies organize the acquisition modalities of scientific images in hierarchical structures. Such taxonomies leverage large sets of correct image labels and provide essential information about the importance of a scientific publication, which could then be used in biocuration tasks. However, the hierarchical nature of the labels, the overhead of processing images, the absence or incompleteness of labelled data and the expertise required to label this type of data impede the creation of useful datasets for biocuration. From a multi‐year collaboration with biocurators and text‐mining researchers, we derive an iterative visual analytics and active learning (AL) strategy to address these challenges. We implement this strategy in a system called BI‐LAVA—Biocuration with Hierarchical Image Labelling through Active Learning and Visual Analytics. BI‐LAVA leverages a small set of image labels, a hierarchical set of image classifiers and AL to help model builders deal with incomplete ground‐truth labels, target a hierarchical taxonomy of image modalities and classify a large pool of unlabelled images. BI‐LAVA's front end uses custom encodings to represent data distributions, taxonomies, image projections and neighbourhoods of image thumbnails, which help model builders explore an unfamiliar image dataset and taxonomy and correct and generate labels. An evaluation with machine learning practitioners shows that our mixed human–machine approach successfully supports domain experts in understanding the characteristics of classes within the taxonomy, as well as validating and improving data quality in labelled and unlabelled collections.
  • Item
    ConAn: Measuring and Evaluating User Confidence in Visual Data Analysis Under Uncertainty
    (Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Musleh, M.; Ceneda, D.; Ehlers, H.; Raidou, R. G.
    User confidence plays an important role in guided visual data analysis scenarios, especially when uncertainty is involved in the analytical process. However, measuring confidence in practical scenarios remains an open challenge, as previous work relies primarily on self‐reporting methods. In this work, we propose a quantitative approach to measure user confidence—as opposed to trust—in an analytical scenario. We do so by exploiting the respective user interaction provenance graph and examining the impact of guidance using a set of network metrics. We assess the usefulness of our proposed metrics through a user study that correlates results obtained from self‐reported confidence assessments and our metrics—both with and without guidance. The results suggest that our metrics improve the evaluation of user confidence compared to available approaches. In particular, we found a correlation between self‐reported confidence and some of the proposed provenance network metrics. The quantitative results, though, do not show a statistically significant impact of the guidance on user confidence. An additional descriptive analysis suggests that guidance could impact users' confidence and that the qualitative analysis of the provenance network topology can provide a comprehensive view of changes in user confidence. Our results indicate that our proposed metrics and the provenance network graph representation support the evaluation of user confidence and, subsequently, the effective development of guidance in VA.
  • Item
    Natural Language Generation for Visualizations: State of the Art, Challenges and Future Directions
    (Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Hoque, E.; Islam, M. Saidul
    Natural language and visualization are two complementary modalities of human communication that play a crucial role in conveying information effectively. While visualizations help people discover trends, patterns and anomalies in data, natural language descriptions help explain these insights. Thus, combining text with visualizations is a prevalent technique for effectively delivering the core message of the data. Given the rise of natural language generation (NLG), there is a growing interest in automatically creating natural language descriptions for visualizations, which can be used as chart captions, answering questions about charts or telling data‐driven stories. In this survey, we systematically review the state of the art on NLG for visualizations and introduce a taxonomy of the problem. The NLG tasks fall within the domain of natural language interfaces (NLIs) for visualization, an area that has garnered significant attention from both the research community and industry. To narrow down the scope of the survey, we primarily concentrate on the research works that focus on text generation for visualizations. To characterize the NLG problem and the design space of proposed solutions, we pose five Wh‐questions, why and how NLG tasks are performed for visualizations, what the task inputs and outputs are, as well as where and when the generated texts are integrated with visualizations. We categorize the solutions used in the surveyed papers based on these ‘five Wh‐questions’. Finally, we discuss the key challenges and potential avenues for future research in this domain.
  • Item
    MANDALA—Visual Exploration of Anomalies in Industrial Multivariate Time Series Data
    (Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2025) Suschnigg, J.; Mutlu, B.; Koutroulis, G.; Hussain, H.; Schreck, T.
    The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data interactively to gain insights using their expertise. Anomalies in multivariate time series can be diverse with respect to the dimensions, temporal occurrence and length within a dataset. Their detection and description depend on the analyst's domain, task and background knowledge. Therefore, anomaly analysis is often an underspecified problem. We propose a visual analytics tool called MANDALA (ultivariate omaly etection nd exportion), which uses kernel density estimation to detect anomalies and provides users with visual means to explore and explain them. To assess our algorithm's effectiveness, we evaluate its ability to identify different types of anomalies using a synthetic dataset generated with the GutenTAG anomaly and time series generator. Our approach allows users to define normal data interactively first. Next, they can explore anomaly candidates, their related dimensions and their temporal scope. Our carefully designed visual analytics components include a tailored scatterplot matrix with semantic zooming features that visualize normal data through hexagonal binning plots and overlay candidate anomaly data as scatterplots. In addition, the system supports the analysis on a broader scope involving all dimensions simultaneously or on a smaller scope involving dimension pairs only. We define a taxonomy of important types of anomaly patterns, which can guide the interactive analysis process. The effectiveness of our system is demonstrated through a use case scenario on industrial data conducted with domain experts from the automotive domain and a user study utilizing a public dataset from the aviation domain.
  • Item
    Detecting, Interpreting and Modifying the Heterogeneous Causal Network in Multi‐Source Event Sequences
    (Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Xu, Shaobin; Sun, Minghui
    Uncovering causal relations from event sequences to guide decision‐making has become an essential task across various domains. Unfortunately, this task remains a challenge because real‐world event sequences are usually collected from multiple sources. Most existing works are specifically designed for homogeneous causal analysis between events from a single source, without considering cross‐source causality. In this work, we propose a heterogeneous causal analysis algorithm to detect the heterogeneous causal network between high‐level events in multi‐source event sequences while preserving the causal semantic relationships between diverse data sources. Additionally, the flexibility of our algorithm allows to incorporate high‐level event similarity into learning model and provides a fuzzy modification mechanism. Based on the algorithm, we further propose a visual analytics framework that supports interpreting the causal network at three granularities and offers a multi‐granularity modification mechanism to incorporate user feedback efficiently. We evaluate the accuracy of our algorithm through an experimental study, illustrate the usefulness of our system through a case study, and demonstrate the efficiency of our modification mechanisms through a user study.
  • Item
    MetapathVis: Inspecting the Effect of Metapath in Heterogeneous Network Embedding via Visual Analytics
    (Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2025) Li, Quan; Tian, Yun; Wang, Xiyuan; Xie, Laixin; Lin, Dandan; Yi, Lingling; Ma, Xiaojuan
    In heterogeneous graphs (HGs), which offer richer network and semantic insights compared to homogeneous graphs, the technique serves as an essential tool for data mining. This technique facilitates the specification of sequences of entity connections, elucidating the semantic composite relationships between various node types for a range of downstream tasks. Nevertheless, selecting the most appropriate metapath from a pool of candidates and assessing its impact presents significant challenges. To address this issue, our study introduces , an interactive visual analytics system designed to assist machine learning (ML) practitioners in comprehensively understanding and comparing the effects of metapaths from multiple fine‐grained perspectives. allows for an in‐depth evaluation of various models generated with different metapaths, aligning HG network information at the individual level with model metrics. It also facilitates the tracking of aggregation processes associated with different metapaths. The effectiveness of our approach is validated through three case studies and a user study, with feedback from domain experts confirming that our system significantly aids ML practitioners in evaluating and comprehending the viability of different metapath designs.