Search Results

Now showing 1 - 10 of 32
  • Item
    A Virtual and Augmented Reality Course Based on Inexpensive Interaction Devices and Displays
    (The Eurographics Association, 2015) Santos, Beatriz Sousa; Dias, Paulo; Madeira, Joaquim; M. Bronstein and M. Teschner
    In the last years a plethora of affordable displays, sensors, and interaction devices has reached the market, fostering the application of Virtual and Augmented Reality to many new situations. Yet, creating such applications requires a good understanding of the field and specific technical skills typically not provided by current Computer Science and Engineering education. This paper presents a graduate level course offered to MSc. Programs in Computer and Electrical Engineering which introduces the main concepts, techniques and tools in Virtual and Augmented Reality. The aim is to provide students with enough background to understand, design, implement and test such applications. The course organization, the main issues addressed and bibliography, the sensors, interaction devices and displays used, and a sample of the practical projects are briefly described. Major issues are discussed and conclusions are drawn.
  • Item
    Implicit Formulation for SPH-based Viscous Fluids
    (The Eurographics Association and John Wiley & Sons Ltd., 2015) Takahashi, Tetsuya; Dobashi, Yoshinori; Fujishiro, Issei; Nishita, Tomoyuki; Lin, Ming C.; Olga Sorkine-Hornung and Michael Wimmer
    We propose a stable and efficient particle-based method for simulating highly viscous fluids that can generate coiling and buckling phenomena and handle variable viscosity. In contrast to previous methods that use explicit integration, our method uses an implicit formulation to improve the robustness of viscosity integration, therefore enabling use of larger time steps and higher viscosities. We use Smoothed Particle Hydrodynamics to solve the full form of viscosity, constructing a sparse linear system with a symmetric positive definite matrix, while exploiting the variational principle that automatically enforces the boundary condition on free surfaces. We also propose a new method for extracting coefficients of the matrix contributed by second-ring neighbor particles to efficiently solve the linear system using a conjugate gradient solver. Several examples demonstrate the robustness and efficiency of our implicit formulation over previous methods and illustrate the versatility of our method.
  • Item
    Eye-tracktive: Measuring Attention to Body Parts when Judging Human Motions
    (The Eurographics Association, 2015) Ennis, Cathy; Hoyet, Ludovic; O'Sullivan, Carol; B. Bickel and T. Ritschel
    Virtual humans are often endowed with human-like characteristics to make them more appealing and engaging. Motion capture is a reliable way to represent natural motion on such characters, thereby allowing a wide range of animations to be automatically created and replicated. However, interpersonal differences in actors' performances can be subtle and complex, yet have a strong effect on the human observer. Such effects can be very difficult to express quantitatively or indeed even qualitatively. We investigate two subjective human motion characteristics: attractiveness and distinctiveness. We conduct a perceptual experiment, where participants' eye movements are tracked while they rate the motions of a range of actors. We found that participants fixate mostly on the torso, regardless of gait and actor sex, and very little on the limbs. However, they self-reported that they used hands, elbows and feet in their judgments, indicating a holistic approach to the problem.
  • Item
    Improving Sampling-based Motion Control
    (The Eurographics Association and John Wiley & Sons Ltd., 2015) Liu, Libin; Yin, KangKang; Guo, Baining; Olga Sorkine-Hornung and Michael Wimmer
    We address several limitations of the sampling-based motion control method of Liu et at. [LYvdP 10]. The key insight is to learn from the past control reconstruction trials through sample distribution adaptation. Coupled with a sliding window scheme for better performance and an averaging method for noise reduction, the improved algorithm can efficiently construct open-loop controls for long and challenging reference motions in good quality. Our ideas are intuitive and the implementations are simple. We compare the improved algorithm with the original algorithm both qualitatively and quantitatively, and demonstrate the effectiveness of the improved algorithm with a variety of motions ranging from stylized walking and dancing to gymnastic and Martial Arts routines.
  • Item
    Interactive HDR Environment Map Capturing on Mobile Devices
    (The Eurographics Association, 2015) Kán, Peter; B. Bickel and T. Ritschel
    Real world illumination, captured by digitizing devices, is beneficial to solve many problems in computer graphics. Therefore, practical methods for capturing this illumination are of high interest. In this paper, we present a novel method for capturing environmental illumination by a mobile device. Our method is highly practical as it requires only a consumer mobile phone and the result can be instantly used for rendering or material estimation.We capture the real light in high dynamic range (HDR) to preserve its high contrast. Our method utilizes the moving camera of a mobile phone in auto-exposure mode to reconstruct HDR values. The projection of the image to the spherical environment map is based on the orientation of the mobile device. Both HDR reconstruction and projection run on the mobile GPU to enable interactivity. Moreover, an additional image alignment step is performed. Our results show that the presented method faithfully captures the real environment and that the rendering with our reconstructed environment maps achieves high quality, comparable to reality.
  • Item
    State of the Art in Hand and Finger Modeling and Animation
    (The Eurographics Association and John Wiley & Sons Ltd., 2015) Wheatland, Nkenge; Wang, Yingying; Song, Huaguang; Neff, Michael; Zordan, Victor; Jörg, Sophie; K. Hormann and O. Staadt
    The human hand is a complex biological system able to perform numerous tasks with impressive accuracy and dexterity. Gestures furthermore play an important role in our daily interactions, and humans are particularly skilled at perceiving and interpreting detailed signals in communications. Creating believable hand motions for virtual characters is an important and challenging task. Many new methods have been proposed in the Computer Graphics community within the last years, and significant progress has been made towards creating convincing, detailed hand and finger motions. This state of the art report presents a review of the research in the area of hand and finger modeling and animation. Starting with the biological structure of the hand and its implications for how the hand moves, we discuss current methods in motion capturing hands, data-driven and physics-based algorithms to synthesize their motions, and techniques to make the appearance of the hand model surface more realistic. We then focus on areas in which detailed hand motions are crucial, such as manipulation and communication. Our report concludes by describing emerging trends and applications for virtual hand animation.
  • Item
    Parallel, Realistic and Controllable Terrain Synthesis
    (The Eurographics Association and John Wiley & Sons Ltd., 2015) Gain, James; Merry, Bruce; Marais, Patrick; Olga Sorkine-Hornung and Michael Wimmer
    The challenge in terrain synthesis for virtual environments is to provide a combination of precise user control over landscape form, with interactive response and visually realistic results. We present a system that builds on parallel pixel-based texture synthesis to enable interactive creation of an output terrain from a database of heightfield exemplars. We also provide modelers with control over height and surrounding slope by means of constraint points and curves; a paint-by-numbers interface for specifying the local character of terrain; coherence controls that allow localization of changes to the synthesized terrain; and copypaste functionality to directly transplant terrain regions. Together these contributions provide a level of realism that, based on user experiments, is indistinguishable from real source terrains; user control sufficient for precise placement of a variety of landforms, such as cliffs, ravines and mesas; and synthesis times of 165ms for a 10242 terrain grid.
  • Item
    Multi-Touch Table System for Medical Visualization
    (The Eurographics Association, 2015) Ynnerman, Anders; Rydell, Thomas; Persson, Anders; Ernvik, Aron; Forsell, Camilla; Ljung, Patric; Lundström, Claes; H.-C. Hege and T. Ropinski
    Medical imaging plays a central role in a vast range of healthcare practices. While the usefulness of 3D visualizations is well known, the adoption of such technology has previously been limited in many medical areas. This paper, awarded the Dirk Bartz Prize for Visual Computing in Medicine 2015, describes the development of a medical multi-touch visualization table that successfully has reached its aim to bring 3D visualization to a wider clinical audience. The descriptions summarize the targeted clinical scenarios, the key characteristics of the system, and the user feedback obtained.
  • Item
    Adaptable Anatomical Models for Realistic Bone Motion Reconstruction
    (The Eurographics Association and John Wiley & Sons Ltd., 2015) Zhu, Lifeng; Hu, Xiaoyan; Kavan, Ladislav; Olga Sorkine-Hornung and Michael Wimmer
    We present a system to reconstruct subject-specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This joint model can be adapted to different individuals without breaking its functionality, i.e., the bones and the skin remain well-articulated after the adaptation.We propose an optimization algorithm which learns the subject-specific (anthropometric) parameters from input point clouds captured using commodity depth cameras. The resulting personalized models can be used to reconstruct motion of human subjects. We validate our approach for upper and lower limbs, using both synthetic data and recordings of three different human subjects. Our reconstructed bone motion is comparable to results obtained by optical motion capture (Vicon) combined with anatomically-based inverse kinematics (OpenSIM). We demonstrate that our adapted models better preserve the joint structure than previous methods such as OpenSIM or Anatomy Transfer.
  • Item
    Real-Time Subspace Integration for Example-Based Elastic Material
    (The Eurographics Association and John Wiley & Sons Ltd., 2015) Zhang, Wenjing; Zheng, Jianmin; Thalmann, Nadia Magnenat; Olga Sorkine-Hornung and Michael Wimmer
    Example-based material allows simulating complex material behaviors in an art-directed way. This paper presents a method for fast subspace integration for example-based elastic material, which is suitable for real-time simulation in computer graphics. At the core of the method is the formulation of a new potential using example-based Green strain tensors. By using this potential, the deformation can be attracted towards the example-based deformation feature space, the example weights can be explicitly obtained and the internal force can be decomposed into the conventional one and an additional one induced by the examples. The real-time subspace integration is then developed with subspace integration costs independent of geometric complexity, and both the reduced conventional internal force and additional one being cubic polynomials in reduced coordinates. Experiments demonstrate that our method can achieve real-time simulation while providing comparable quality with the prior art.