Search Results

Now showing 1 - 2 of 2
  • Item
    Skeleton-Intrinsic Symmetrization of Shapes
    (The Eurographics Association and John Wiley & Sons Ltd., 2015) Zheng, Qian; Hao, Zhuming; Huang, Hui; Xu, Kai; Zhang, Hao; Cohen-Or, Daniel; Chen, Baoquan; Olga Sorkine-Hornung and Michael Wimmer
    Enhancing the self-symmetry of a shape is of fundamental aesthetic virtue. In this paper, we are interested in recovering the aesthetics of intrinsic reflection symmetries, where an asymmetric shape is symmetrized while keeping its general pose and perceived dynamics. The key challenge to intrinsic symmetrization is that the input shape has only approximate reflection symmetries, possibly far from perfect. The main premise of our work is that curve skeletons provide a concise and effective shape abstraction for analyzing approximate intrinsic symmetries as well as symmetrization. By measuring intrinsic distances over a curve skeleton for symmetry analysis, symmetrizing the skeleton, and then propagating the symmetrization from skeleton to shape, our approach to shape symmetrization is skeleton-intrinsic. Specifically, given an input shape and an extracted curve skeleton, we introduce the notion of a backbone as the path in the skeleton graph about which a self-matching of the input shape is optimal. We define an objective function for the reflective self-matching and develop an algorithm based on genetic programming to solve the global search problem for the backbone. The extracted backbone then guides the symmetrization of the skeleton, which in turn, guides the symmetrization of the whole shape. We show numerous intrinsic symmetrization results of hand drawn sketches and artist-modeled or reconstructed 3D shapes, as well as several applications of skeleton-intrinsic symmetrization of shapes.
  • Item
    Hallucinating Stereoscopy from a Single Image
    (The Eurographics Association and John Wiley & Sons Ltd., 2015) Zeng, Qiong; Chen, Wenzheng; Wang, Huan; Tu, Changhe; Cohen-Or, Daniel; Lischinski, Dani; Chen, Baoquan; Olga Sorkine-Hornung and Michael Wimmer
    We introduce a novel method for enabling stereoscopic viewing of a scene from a single pre-segmented image. Rather than attempting full 3D reconstruction or accurate depth map recovery, we hallucinate a rough approximation of the scene's 3D model using a number of simple depth and occlusion cues and shape priors. We begin by depth-sorting the segments, each of which is assumed to represent a separate object in the scene, resulting in a collection of depth layers. The shapes and textures of the partially occluded segments are then completed using symmetry and convexity priors. Next, each completed segment is converted to a union of generalized cylinders yielding a rough 3D model for each object. Finally, the object depths are refined using an iterative ground fitting process. The hallucinated 3D model of the scene may then be used to generate a stereoscopic image pair, or to produce images from novel viewpoints within a small neighborhood of the original view. Despite the simplicity of our approach, we show that it compares favorably with state-of-the-art depth ordering methods. A user study was conducted showing that our method produces more convincing stereoscopic images than existing semi-interactive and automatic single image depth recovery methods.