Search Results

Now showing 1 - 10 of 274
  • Item
    Seamless and Aligned Texture Optimization for 3D Reconstruction
    (The Eurographics Association and John Wiley & Sons Ltd., 2024) Wang, Lei; Ge, Linlin; Zhang, Qitong; Feng, Jieqing; Chen, Renjie; Ritschel, Tobias; Whiting, Emily
    Restoring the appearance of the model is a crucial step for achieving realistic 3D reconstruction. High-fidelity textures can also conceal some geometric defects. Since the estimated camera parameters and reconstructed geometry usually contain errors, subsequent texture mapping often suffers from undesirable visual artifacts such as blurring, ghosting, and visual seams. In particular, significant misalignment between the reconstructed model and the registered images will lead to texturing the mesh with inconsistent image regions. However, eliminating various artifacts to generate high-quality textures remains a challenge. In this paper, we address this issue by designing a texture optimization method to generate seamless and aligned textures for 3D reconstruction. The main idea is to detect misalignment regions between images and geometry and exclude them from texture mapping. To handle the texture holes caused by these excluded regions, a cross-patch texture hole-filling method is proposed, which can also synthesize plausible textures for invisible faces. Moreover, for better stitching of the textures from different views, an improved camera pose optimization is present by introducing color adjustment and boundary point sampling. Experimental results show that the proposed method can eliminate the artifacts caused by inaccurate input data robustly and produce highquality texture results compared with state-of-the-art methods.
  • Item
    Sketching Vocabulary for Crowd Motion
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Mathew, C. D. Tharindu; Benes, Bedrich; Aliaga, Daniel; Dominik L. Michels; Soeren Pirk
    This paper proposes and evaluates a sketching language to author crowd motion. It focuses on the path, speed, thickness, and density parameters of crowd motion. A sketch-based vocabulary is proposed for each parameter and evaluated in a user study against complex crowd scenes. A sketch recognition pipeline converts the sketches into a crowd simulation. The user study results show that 1) participants at various skill levels and can draw accurate crowd motion through sketching, 2) certain sketch styles lead to a more accurate representation of crowd parameters, and 3) sketching allows to produce complex crowd motions in a few seconds. The results show that some styles although accurate actually are less preferred over less accurate ones.
  • Item
    Edge-Friend: Fast and Deterministic Catmull-Clark Subdivision Surfaces
    (The Eurographics Association and John Wiley & Sons Ltd., 2023) Kuth, Bastian; Oberberger, Max; Chajdas, Matthäus; Meyer, Quirin; Bikker, Jacco; Gribble, Christiaan
    We present edge-friend, a data structure for quad meshes with access to neighborhood information required for Catmull-Clark subdivision surface refinement. Edge-friend enables efficient real-time subdivision surface rendering. In particular, the resulting algorithm is deterministic, does not require hardware support for atomic floating-point arithmetic, and is optimized for efficient rendering on GPUs. Edge-friend exploits that after one subdivision step, two edges can be uniquely and implicitly assigned to each quad. Additionally, edge-friend is a compact data structure, adding little overhead. Our algorithm is simple to implement in a single compute shader kernel, and requires minimal synchronization which makes it particularly suited for asynchronous execution. We easily extend our kernel to support relevant Catmull-Clark subdivision surface features, including semi-smooth creases, boundaries, animation and attribute interpolation. In case of topology changes, our data structure requires little preprocessing, making it amendable for a variety of applications, including real-time editing and animations. Our method can process and render billions of triangles per second on modern GPUs. For a sample mesh, our algorithm generates and renders 2.9 million triangles in 0.58ms on an AMD Radeon RX 7900 XTX GPU.
  • Item
    N-Cloth: Predicting 3D Cloth Deformation with Mesh-Based Networks
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Li, Yu Di; Tang, Min; Yang, Yun; Huang, Zi; Tong, Ruo Feng; Yang, Shuang Cai; Li, Yao; Manocha, Dinesh; Chaine, Raphaëlle; Kim, Min H.
    We present a novel mesh-based learning approach (N-Cloth) for plausible 3D cloth deformation prediction. Our approach is general and can handle cloth or obstacles represented by triangle meshes with arbitrary topologies.We use graph convolution to transform the cloth and object meshes into a latent space to reduce the non-linearity in the mesh space. Our network can predict the target 3D cloth mesh deformation based on the initial state of the cloth mesh template and the target obstacle mesh. Our approach can handle complex cloth meshes with up to 100K triangles and scenes with various objects corresponding to SMPL humans, non-SMPL humans or rigid bodies. In practice, our approach can be used to generate plausible cloth simulation at 30??45 fps on an NVIDIA GeForce RTX 3090 GPU. We highlight its benefits over prior learning-based methods and physicallybased cloth simulators.
  • Item
    Entropy-driven Progressive Compression of 3D Point Clouds
    (The Eurographics Association and John Wiley & Sons Ltd., 2024) Zampieri, Armand; Delarue, Guillaume; Bakr, Nachwa Abou; Alliez, Pierre; Hu, Ruizhen; Lefebvre, Sylvain
    3D point clouds stand as one of the prevalent representations for 3D data, offering the advantage of closely aligning with sensing technologies and providing an unbiased representation of a measured physical scene. Progressive compression is required for real-world applications operating on networked infrastructures with restricted or variable bandwidth. We contribute a novel approach that leverages a recursive binary space partition, where the partitioning planes are not necessarily axis-aligned and optimized via an entropy criterion. The planes are encoded via a novel adaptive quantization method combined with prediction. The input 3D point cloud is encoded as an interlaced stream of partitioning planes and number of points in the cells of the partition. Compared to previous work, the added value is an improved rate-distortion performance, especially for very low bitrates. The latter are critical for interactive navigation of large 3D point clouds on heterogeneous networked infrastructures.
  • Item
    Variational Pose Prediction with Dynamic Sample Selection from Sparse Tracking Signals
    (The Eurographics Association and John Wiley & Sons Ltd., 2023) Milef, Nicholas; Sueda, Shinjiro; Kalantari, Nima Khademi; Myszkowski, Karol; Niessner, Matthias
    We propose a learning-based approach for full-body pose reconstruction from extremely sparse upper body tracking data, obtained from a virtual reality (VR) device. We leverage a conditional variational autoencoder with gated recurrent units to synthesize plausible and temporally coherent motions from 4-point tracking (head, hands, and waist positions and orientations). To avoid synthesizing implausible poses, we propose a novel sample selection and interpolation strategy along with an anomaly detection algorithm. Specifically, we monitor the quality of our generated poses using the anomaly detection algorithm and smoothly transition to better samples when the quality falls below a statistically defined threshold. Moreover, we demonstrate that our sample selection and interpolation method can be used for other applications, such as target hitting and collision avoidance, where the generated motions should adhere to the constraints of the virtual environment. Our system is lightweight, operates in real-time, and is able to produce temporally coherent and realistic motions.
  • Item
    Dissection Puzzles Composed of Multicolor Polyominoes
    (The Eurographics Association and John Wiley & Sons Ltd., 2023) Kita, Naoki; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.
    Dissection puzzles leverage geometric dissections, wherein a set of puzzle pieces can be reassembled in various configurations to yield unique geometric figures. Mathematically, a dissection between two 2D polygons can always be established. Consequently, researchers and puzzle enthusiasts strive to design unique dissection puzzles using the fewest pieces feasible. In this study, we introduce novel dissection puzzles crafted with multi-colored polyominoes. Diverging from the traditional aim of establishing geometric dissection between two 2D polygons with the minimal piece count, we seek to identify a common pool of polyomino pieces with colored faces that can be configured into multiple distinct shapes and appearances. Moreover, we offer a method to identify an optimized sequence for rearranging pieces from one form to another, thus minimizing the total relocation distance. This approach can guide users in puzzle assembly and lessen their physical exertion when manually reconfiguring pieces. It could potentially also decrease power consumption when pieces are reorganized using robotic assistance. We showcase the efficacy of our proposed approach through a wide range of shapes and appearances.
  • Item
    Computational Smocking through Fabric-Thread Interaction
    (The Eurographics Association and John Wiley & Sons Ltd., 2024) Zhou, Ningfeng; Ren, Jing; Sorkine-Hornung, Olga; Bermano, Amit H.; Kalogerakis, Evangelos
    We formalize Italian smocking, an intricate embroidery technique that gathers flat fabric into pleats along meandering lines of stitches, resulting in pleats that fold and gather where the stitching veers. In contrast to English smocking, characterized by colorful stitches decorating uniformly shaped pleats, and Canadian smocking, which uses localized knots to form voluminous pleats, Italian smocking permits the fabric to move freely along the stitched threads following curved paths, resulting in complex and unpredictable pleats with highly diverse, irregular structures, achieved simply by pulling on the threads. We introduce a novel method for digital previewing of Italian smocking results, given the thread stitching path as input. Our method uses a coarse-grained mass-spring system to simulate the interaction between the threads and the fabric. This configuration guides the fine-level fabric deformation through an adaptation of the state-of-the-art simulator, C-IPC [LKJ21]. Our method models the general problem of fabric-thread interaction and can be readily adapted to preview Canadian smocking as well.We compare our results to baseline approaches and physical fabrications to demonstrate the accuracy of our method.
  • Item
    Robust Distribution-aware Color Correction for Single-shot Images
    (The Eurographics Association and John Wiley & Sons Ltd., 2023) Dhillon, Daljit Singh J.; Joshi, Parisha; Baron, Jessica; Patterson, Eric K.; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.
    Color correction for photographed images is an ill-posed problem. It is also a crucial initial step towards material acquisition for inverse rendering methods or pipelines. Several state-of-the-art methods rely on reducing color differences for imaged reference color chart blocks of known color values to devise or optimize their solution. In this paper, we first establish through simulations the limitation of this minimality criteria which in principle results in overfitting. Next, we study and propose a few spatial distribution measures to augment the evaluation criteria. Thereafter, we propose a novel patch-based, white-point centric approach that processes luminance and chrominance information separately to improve on the color matching task. We compare our method qualitatively with several state-of-the art methods using our augmented evaluation criteria along with quantitative examinations. Finally, we perform rigorous experiments and demonstrate results to clearly establish the benefits of our proposed method.
  • Item
    Neural Flow Map Reconstruction
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Sahoo, Saroj; Lu, Yuzhe; Berger, Matthew; Borgo, Rita; Marai, G. Elisabeta; Schreck, Tobias
    In this paper we present a reconstruction technique for the reduction of unsteady flow data based on neural representations of time-varying vector fields. Our approach is motivated by the large amount of data typically generated in numerical simulations, and in turn the types of data that domain scientists can generate in situ that are compact, yet useful, for post hoc analysis. One type of data commonly acquired during simulation are samples of the flow map, where a single sample is the result of integrating the underlying vector field for a specified time duration. In our work, we treat a collection of flow map samples for a single dataset as a meaningful, compact, and yet incomplete, representation of unsteady flow, and our central objective is to find a representation that enables us to best recover arbitrary flow map samples. To this end, we introduce a technique for learning implicit neural representations of time-varying vector fields that are specifically optimized to reproduce flow map samples sparsely covering the spatiotemporal domain of the data. We show that, despite aggressive data reduction, our optimization problem - learning a function-space neural network to reproduce flow map samples under a fixed integration scheme - leads to representations that demonstrate strong generalization, both in the field itself, and using the field to approximate the flow map. Through quantitative and qualitative analysis across different datasets we show that our approach is an improvement across a variety of data reduction methods, and across a variety of measures ranging from improved vector fields, flow maps, and features derived from the flow map.