267 results
Search Results
Now showing 1 - 10 of 267
Item Harmonics Virtual Lights: Fast Projection of Luminance Field on Spherical Harmonics for Efficient Rendering(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Mézières, Pierre; Desrichard, François; Vanderhaeghe, David; Paulin, Mathias; Hauser, Helwig and Alliez, PierreIn this paper, we introduce harmonics virtual lights (HVL), to model indirect light sources for interactive global illumination of dynamic 3D scenes. Virtual point lights (VPL) are an efficient approach to define indirect light sources and to evaluate the resulting indirect lighting. Nonetheless, VPL suffer from disturbing artefacts, especially with high‐frequency materials. Virtual spherical lights (VSL) avoid these artefacts by considering spheres instead of points but estimates the lighting integral using Monte‐Carlo which results to noise in the final image. We define HVL as an extension of VSL in a spherical harmonics (SH) framework, defining a closed form of the lighting integral evaluation. We propose an efficient SH projection of spherical lights contribution faster than existing methods. Computing the outgoing luminance requires operations when using materials with circular symmetric lobes, and operations for the general case, where is the number of SH bands. HVL can be used with either parametric or measured BRDF without extra cost and offers control over rendering time and image quality, by either decreasing or increasing the band limit used for SH projection. Our approach is particularly well‐designed to render medium‐frequency one‐bounce global illumination with arbitrary BRDF at an interactive frame rate.Item Level of Detail Exploration of Electronic Transition Ensembles using Hierarchical Clustering(The Eurographics Association and John Wiley & Sons Ltd., 2022) Sidwall Thygesen, Signe; Masood, Talha Bin; Linares, Mathieu; Natarajan, Vijay; Hotz, Ingrid; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasWe present a pipeline for the interactive visual analysis and exploration of molecular electronic transition ensembles. Each ensemble member is specified by a molecular configuration, the charge transfer between two molecular states, and a set of physical properties. The pipeline is targeted towards theoretical chemists, supporting them in comparing and characterizing electronic transitions by combining automatic and interactive visual analysis. A quantitative feature vector characterizing the electron charge transfer serves as the basis for hierarchical clustering as well as for the visual representations. The interface for the visual exploration consists of four components. A dendrogram provides an overview of the ensemble. It is augmented with a level of detail glyph for each cluster. A scatterplot using dimensionality reduction provides a second visualization, highlighting ensemble outliers. Parallel coordinates show the correlation with physical parameters. A spatial representation of selected ensemble members supports an in-depth inspection of transitions in a form that is familiar to chemists. All views are linked and can be used to filter and select ensemble members. The usefulness of the pipeline is shown in three different case studies.Item EHR STAR: The State‐Of‐the‐Art in Interactive EHR Visualization(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2022) Wang, Q.; Laramee, R.S.; Hauser, Helwig and Alliez, PierreSince the inception of electronic health records (EHR) and population health records (PopHR), the volume of archived digital health records is growing rapidly. Large volumes of heterogeneous health records require advanced visualization and visual analytics systems to uncover valuable insight buried in complex databases. As a vibrant sub‐field of information visualization and visual analytics, many interactive EHR and PopHR visualization (EHR Vis) systems have been proposed, developed, and evaluated by clinicians to support effective clinical analysis and decision making. We present the state‐of‐the‐art (STAR) of EHR Vis literature and open access healthcare data sources and provide an up‐to‐date overview on this important topic. We identify trends and challenges in the field, introduce novel literature and data classifications, and incorporate a popular medical terminology standard called the Unified Medical Language System (UMLS). We provide a curated list of electronic and population healthcare data sources and open access datasets as a resource for potential researchers, in order to address one of the main challenges in this field. We classify the literature based on multidisciplinary research themes stemming from reoccurring topics. The survey provides a valuable overview of EHR Vis revealing both mature areas and potential future multidisciplinary research directions.Item Sketching Vocabulary for Crowd Motion(The Eurographics Association and John Wiley & Sons Ltd., 2022) Mathew, C. D. Tharindu; Benes, Bedrich; Aliaga, Daniel; Dominik L. Michels; Soeren PirkThis paper proposes and evaluates a sketching language to author crowd motion. It focuses on the path, speed, thickness, and density parameters of crowd motion. A sketch-based vocabulary is proposed for each parameter and evaluated in a user study against complex crowd scenes. A sketch recognition pipeline converts the sketches into a crowd simulation. The user study results show that 1) participants at various skill levels and can draw accurate crowd motion through sketching, 2) certain sketch styles lead to a more accurate representation of crowd parameters, and 3) sketching allows to produce complex crowd motions in a few seconds. The results show that some styles although accurate actually are less preferred over less accurate ones.Item NSTO: Neural Synthesizing Topology Optimization for Modulated Structure Generation(The Eurographics Association and John Wiley & Sons Ltd., 2022) Zhong, Shengze; Punpongsanon, Parinya; Iwai, Daisuke; Sato, Kosuke; Umetani, Nobuyuki; Wojtan, Chris; Vouga, EtienneNature evolves structures like honeycombs at optimized performance with limited material. These efficient structures can be artificially created with the collaboration of structural topology optimization and additive manufacturing. However, the extensive computation cost of topology optimization causes low mesh resolution, long solving time, and rough boundaries that fail to match the requirements for meeting the growing personal fabrication demands and printing capability. Therefore, we propose the neural synthesizing topology optimization that leverages a self-supervised coordinate-based network to optimize structures with significantly shorter computation time, where the network encodes the structural material layout as an implicit function of coordinates. Continuous solution space is further generated from optimization tasks under varying boundary conditions or constraints for users' instant inference of novel solutions. We demonstrate the system's efficacy for a broad usage scenario through numerical experiments and 3D printing.Item SVBRDF Recovery from a Single Image with Highlights Using a Pre‐trained Generative Adversarial Network(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Wen, Tao; Wang, Beibei; Zhang, Lei; Guo, Jie; Holzschuch, Nicolas; Hauser, Helwig and Alliez, PierreSpatially varying bi‐directional reflectance distribution functions (SVBRDFs) are crucial for designers to incorporate new materials in virtual scenes, making them look more realistic. Reconstruction of SVBRDFs is a long‐standing problem. Existing methods either rely on an extensive acquisition system or require huge datasets, which are non‐trivial to acquire. We aim to recover SVBRDFs from a single image, without any datasets. A single image contains incomplete information about the SVBRDF, making the reconstruction task highly ill‐posed. It is also difficult to separate between the changes in colour that are caused by the material and those caused by the illumination, without the prior knowledge learned from the dataset. In this paper, we use an unsupervised generative adversarial neural network (GAN) to recover SVBRDFs maps with a single image as input. To better separate the effects due to illumination from the effects due to the material, we add the hypothesis that the material is stationary and introduce a new loss function based on Fourier coefficients to enforce this stationarity. For efficiency, we train the network in two stages: reusing a trained model to initialize the SVBRDFs and fine‐tune it based on the input image. Our method generates high‐quality SVBRDFs maps from a single input photograph, and provides more vivid rendering results compared to the previous work. The two‐stage training boosts runtime performance, making it eight times faster than the previous work.Item CAST: Character labeling in Animation using Self-supervision by Tracking(The Eurographics Association and John Wiley & Sons Ltd., 2022) Nir, Oron; Rapoport, Gal; Shamir, Ariel; Chaine, Raphaëlle; Kim, Min H.Cartoons and animation domain videos have very different characteristics compared to real-life images and videos. In addition, this domain carries a large variability in styles. Current computer vision and deep-learning solutions often fail on animated content because they were trained on natural images. In this paper we present a method to refine a semantic representation suitable for specific animated content. We first train a neural network on a large-scale set of animation videos and use the mapping to deep features as an embedding space. Next, we use self-supervision to refine the representation for any specific animation style by gathering many examples of animated characters in this style, using a multi-object tracking. These examples are used to define triplets for contrastive loss training. The refined semantic space allows better clustering of animated characters even when they have diverse manifestations. Using this space we can build dictionaries of characters in an animation videos, and define specialized classifiers for specific stylistic content (e.g., characters in a specific animation series) with very little user effort. These classifiers are the basis for automatically labeling characters in animation videos. We present results on a collection of characters in a variety of animation styles.Item LineageD: An Interactive Visual System for Plant Cell Lineage Assignments based on Correctable Machine Learning(The Eurographics Association and John Wiley & Sons Ltd., 2022) Hong, Jiayi; Trubuil, Alain; Isenberg, Tobias; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasWe describe LineageD-a hybrid web-based system to predict, visualize, and interactively adjust plant embryo cell lineages. Currently, plant biologists explore the development of an embryo and its hierarchical cell lineage manually, based on a 3D dataset that represents the embryo status at one point in time. This human decision-making process, however, is time-consuming, tedious, and error-prone due to the lack of integrated graphical support for specifying the cell lineage. To fill this gap, we developed a new system to support the biologists in their tasks using an interactive combination of 3D visualization, abstract data visualization, and correctable machine learning to modify the proposed cell lineage. We use existing manually established cell lineages to obtain a neural network model. We then allow biologists to use this model to repeatedly predict assignments of a single cell division stage. After each hierarchy level prediction, we allow them to interactively adjust the machine learning based assignment, which we then integrate into the pool of verified assignments for further predictions. In addition to building the hierarchy this way in a bottom-up fashion, we also offer users to divide the whole embryo and create the hierarchy tree in a top-down fashion for a few steps, improving the ML-based assignments by reducing the potential for wrong predictions. We visualize the continuously updated embryo and its hierarchical development using both 3D spatial and abstract tree representations, together with information about the model's confidence and spatial properties. We conducted case study validations with five expert biologists to explore the utility of our approach and to assess the potential for LineageD to be used in their daily workflow. We found that the visualizations of both 3D representations and abstract representations help with decision making and the hierarchy tree top-down building approach can reduce assignments errors in real practice.Item Issue Information(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Hauser, Helwig and Alliez, PierreItem N-Cloth: Predicting 3D Cloth Deformation with Mesh-Based Networks(The Eurographics Association and John Wiley & Sons Ltd., 2022) Li, Yu Di; Tang, Min; Yang, Yun; Huang, Zi; Tong, Ruo Feng; Yang, Shuang Cai; Li, Yao; Manocha, Dinesh; Chaine, Raphaëlle; Kim, Min H.We present a novel mesh-based learning approach (N-Cloth) for plausible 3D cloth deformation prediction. Our approach is general and can handle cloth or obstacles represented by triangle meshes with arbitrary topologies.We use graph convolution to transform the cloth and object meshes into a latent space to reduce the non-linearity in the mesh space. Our network can predict the target 3D cloth mesh deformation based on the initial state of the cloth mesh template and the target obstacle mesh. Our approach can handle complex cloth meshes with up to 100K triangles and scenes with various objects corresponding to SMPL humans, non-SMPL humans or rigid bodies. In practice, our approach can be used to generate plausible cloth simulation at 30??45 fps on an NVIDIA GeForce RTX 3090 GPU. We highlight its benefits over prior learning-based methods and physicallybased cloth simulators.