714 results
Search Results
Now showing 1 - 10 of 714
Item Learning Physically Based Humanoid Climbing Movements(The Eurographics Association and John Wiley & Sons Ltd., 2018) Naderi, Kourosh; Babadi, Amin; Hämäläinen, Perttu; Thuerey, Nils and Beeler, ThaboWe propose a novel learning-based solution for motion planning of physically-based humanoid climbing that allows for fast and robust planning of complex climbing strategies and movements, including extreme movements such as jumping. Similar to recent previous work, we combine a high-level graph-based path planner with low-level sampling-based optimization of climbing moves. We contribute through showing that neural network models of move success probability, effortfulness, and control policy can make both the high-level and low-level components more efficient and robust. The models can be trained through random simulation practice without any data. The models also eliminate the need for laboriously hand-tuned heuristics for graph search. As a result, we are able to efficiently synthesize climbing sequences involving dynamic leaps and one-hand swings, i.e. there are no limits to the movement complexity or the number of limbs allowed to move simultaneously. Our supplemental video also provides some comparisons between our AI climber and a real human climber.Item Quad Layouts via Constrained T-Mesh Quantization(The Eurographics Association and John Wiley & Sons Ltd., 2021) Lyon, Max; Campen, Marcel; Kobbelt, Leif; Mitra, Niloy and Viola, IvanWe present a robust and fast method for the creation of conforming quad layouts on surfaces. Our algorithm is based on the quantization of a T-mesh, i.e. an assignment of integer lengths to the sides of a non-conforming rectangular partition of the surface. This representation has the benefit of being able to encode an infinite number of layout connectivity options in a finite manner, which guarantees that a valid layout can always be found. We carefully construct the T-mesh from a given seamless parametrization such that the algorithm can provide guarantees on the results' quality. In particular, the user can specify a bound on the angular deviation of layout edges from prescribed directions. We solve an integer linear program (ILP) to find a coarse quad layout adhering to that maximal deviation. Our algorithm is guaranteed to yield a conforming quad layout free of T-junctions together with bounded angle distortion. Our results show that the presented method is fast, reliable, and achieves high quality layouts.Item Seamless and Aligned Texture Optimization for 3D Reconstruction(The Eurographics Association and John Wiley & Sons Ltd., 2024) Wang, Lei; Ge, Linlin; Zhang, Qitong; Feng, Jieqing; Chen, Renjie; Ritschel, Tobias; Whiting, EmilyRestoring the appearance of the model is a crucial step for achieving realistic 3D reconstruction. High-fidelity textures can also conceal some geometric defects. Since the estimated camera parameters and reconstructed geometry usually contain errors, subsequent texture mapping often suffers from undesirable visual artifacts such as blurring, ghosting, and visual seams. In particular, significant misalignment between the reconstructed model and the registered images will lead to texturing the mesh with inconsistent image regions. However, eliminating various artifacts to generate high-quality textures remains a challenge. In this paper, we address this issue by designing a texture optimization method to generate seamless and aligned textures for 3D reconstruction. The main idea is to detect misalignment regions between images and geometry and exclude them from texture mapping. To handle the texture holes caused by these excluded regions, a cross-patch texture hole-filling method is proposed, which can also synthesize plausible textures for invisible faces. Moreover, for better stitching of the textures from different views, an improved camera pose optimization is present by introducing color adjustment and boundary point sampling. Experimental results show that the proposed method can eliminate the artifacts caused by inaccurate input data robustly and produce highquality texture results compared with state-of-the-art methods.Item Stable and Efficient Differential Estimators on Oriented Point Clouds(The Eurographics Association and John Wiley & Sons Ltd., 2021) Lejemble, Thibault; Coeurjolly, David; Barthe, Loïc; Mellado, Nicolas; Digne, Julie and Crane, KeenanPoint clouds are now ubiquitous in computer graphics and computer vision. Differential properties of the point-sampled surface, such as principal curvatures, are important to estimate in order to locally characterize the scanned shape. To approximate the surface from unstructured points equipped with normal vectors, we rely on the Algebraic Point Set Surfaces (APSS) [GG07] for which we provide convergence and stability proofs for the mean curvature estimator. Using an integral invariant viewpoint, this first contribution links the algebraic sphere regression involved in the APSS algorithm to several surface derivatives of different orders. As a second contribution, we propose an analytic method to compute the shape operator and its principal curvatures from the fitted algebraic sphere. We compare our method to the state-of-the-art with several convergence and robustness tests performed on a synthetic sampled surface. Experiments show that our curvature estimations are more accurate and stable while being faster to compute compared to previous methods. Our differential estimators are easy to implement with little memory footprint and only require a unique range neighbors query per estimation. Its highly parallelizable nature makes it appropriate for processing large acquired data, as we show in several real-world experiments.Item Sketching Vocabulary for Crowd Motion(The Eurographics Association and John Wiley & Sons Ltd., 2022) Mathew, C. D. Tharindu; Benes, Bedrich; Aliaga, Daniel; Dominik L. Michels; Soeren PirkThis paper proposes and evaluates a sketching language to author crowd motion. It focuses on the path, speed, thickness, and density parameters of crowd motion. A sketch-based vocabulary is proposed for each parameter and evaluated in a user study against complex crowd scenes. A sketch recognition pipeline converts the sketches into a crowd simulation. The user study results show that 1) participants at various skill levels and can draw accurate crowd motion through sketching, 2) certain sketch styles lead to a more accurate representation of crowd parameters, and 3) sketching allows to produce complex crowd motions in a few seconds. The results show that some styles although accurate actually are less preferred over less accurate ones.Item Semantic Reconstruction: Reconstruction of Semantically Segmented 3D Meshes via Volumetric Semantic Fusion(The Eurographics Association and John Wiley & Sons Ltd., 2018) Jeon, Junho; Jung, Jinwoong; Kim, Jungeon; Lee, Seungyong; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesSemantic segmentation partitions a given image or 3D model of a scene into semantically meaning parts and assigns predetermined labels to the parts. With well-established datasets, deep networks have been successfully used for semantic segmentation of RGB and RGB-D images. On the other hand, due to the lack of annotated large-scale 3D datasets, semantic segmentation for 3D scenes has not yet been much addressed with deep learning. In this paper, we present a novel framework for generating semantically segmented triangular meshes of reconstructed 3D indoor scenes using volumetric semantic fusion in the reconstruction process. Our method integrates the results of CNN-based 2D semantic segmentation that is applied to the RGB-D stream used for dense surface reconstruction. To reduce the artifacts from noise and uncertainty of single-view semantic segmentation, we introduce adaptive integration for the volumetric semantic fusion and CRF-based semantic label regularization. With these methods, our framework can easily generate a high-quality triangular mesh of the reconstructed 3D scene with dense (i.e., per-vertex) semantic labels. Extensive experiments demonstrate that our semantic segmentation results of 3D scenes achieves the state-of-the-art performance compared to the previous voxel-based and point cloud-based methods.Item Next Event Estimation++: Visibility Mapping for Efficient Light Transport Simulation(The Eurographics Association and John Wiley & Sons Ltd., 2020) Guo, Jerry Jinfeng; Eisemann, Martin; Eisemann, Elmar; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueMonte-Carlo rendering requires determining the visibility between scene points as the most common and compute intense operation to establish paths between camera and light source. Unfortunately, many tests reveal occlusions and the corresponding paths do not contribute to the final image. In this work, we present next event estimation++ (NEE++): a visibility mapping technique to perform visibility tests in a more informed way by caching voxel to voxel visibility probabilities. We show two scenarios: Russian roulette style rejection of visibility tests and direct importance sampling of the visibility. We show applications to next event estimation and light sampling in a uni-directional path tracer, and light-subpath sampling in Bi-Directional Path Tracing. The technique is simple to implement, easy to add to existing rendering systems, and comes at almost no cost, as the required information can be directly extracted from the rendering process itself. It discards up to 80% of visibility tests on average, while reducing variance by ~20% compared to other state-of-the-art light sampling techniques with the same number of samples. It gracefully handles complex scenes with efficiency similar to Metropolis light transport techniques but with a more uniform convergence.Item Edge-Friend: Fast and Deterministic Catmull-Clark Subdivision Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2023) Kuth, Bastian; Oberberger, Max; Chajdas, Matthäus; Meyer, Quirin; Bikker, Jacco; Gribble, ChristiaanWe present edge-friend, a data structure for quad meshes with access to neighborhood information required for Catmull-Clark subdivision surface refinement. Edge-friend enables efficient real-time subdivision surface rendering. In particular, the resulting algorithm is deterministic, does not require hardware support for atomic floating-point arithmetic, and is optimized for efficient rendering on GPUs. Edge-friend exploits that after one subdivision step, two edges can be uniquely and implicitly assigned to each quad. Additionally, edge-friend is a compact data structure, adding little overhead. Our algorithm is simple to implement in a single compute shader kernel, and requires minimal synchronization which makes it particularly suited for asynchronous execution. We easily extend our kernel to support relevant Catmull-Clark subdivision surface features, including semi-smooth creases, boundaries, animation and attribute interpolation. In case of topology changes, our data structure requires little preprocessing, making it amendable for a variety of applications, including real-time editing and animations. Our method can process and render billions of triangles per second on modern GPUs. For a sample mesh, our algorithm generates and renders 2.9 million triangles in 0.58ms on an AMD Radeon RX 7900 XTX GPU.Item Cosserat Rod with rh-Adaptive Discretization(The Eurographics Association and John Wiley & Sons Ltd., 2020) Wen, Jiahao; Chen, Jiong; Nobuyuki, Umetani; Bao, Hujun; Huang, Jin; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueRod-like one-dimensional elastic objects often exhibit complex behaviors which pose great challenges to the discretization method for pursuing a faithful simulation. By only moving a small portion of material points, the Eulerian-on-Lagrangian (EoL) method already shows great adaptivity to handle sharp contact, but it is still far from enough to reproduce rich and complex geometry details arising in simulations. In this paper, we extend the discrete configuration space by unifying all Lagrangian and EoL nodes in representation for even more adaptivity with every sample being assigned with a dynamic material coordinate. However, this great extension will immediately bring in much more redundancy in the dynamic system. Therefore, we propose additional energy to control the spatial distribution of all material points, seeking to equally space them with respect to a curvature-based density field as a monitor. This flexible approach can effectively constrain the motion of material points to resolve numerical degeneracy, while simultaneously enables them to notably slide inside the parametric domain to account for the shape parameterization. Besides, to accurately respond to sharp contact, our method can also insert or remove nodes online and adjust the energy stiffness to suppress possible jittering artifacts that could be excited in a stiff system. As a result of this hybrid rh-adaption, our proposed method is capable of reproducing many realistic rod dynamics, such as excessive bending, twisting and knotting while only using a limited number of elements.Item Practical Fabrication of Discrete Chebyshev Nets(The Eurographics Association and John Wiley & Sons Ltd., 2020) Liu, Hao-Yu; Liu, Zhong-Yuan; Zhao, Zheng-Yu; Liu, Ligang; Fu, Xiao-Ming; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueWe propose a computational and practical technique to allow home users to fabricate discrete Chebyshev nets for various 3D models. The success of our method relies on two key components. The first one is a novel and simple method to approximate discrete integrable, unit-length, and angle-bounded frame fields, used to model discrete Chebyshev nets. Central to our field generation process is an alternating algorithm that takes turns executing one pass to enforce integrability and another pass to approach unit length while bounding angles. The second is a practical fabrication specification. The discrete Chebyshev net is first partitioned into a set of patches to facilitate manufacturing. Then, each patch is assigned a specification on pulling, bend, and fold to fit the nets. We demonstrate the capability and feasibility of our method in various complex models.