Search Results

Now showing 1 - 10 of 108
  • Item
    Structure and Empathy in Visual Data Storytelling: Evaluating their Influence on Attitude
    (The Eurographics Association and John Wiley & Sons Ltd., 2020) Liem, Johannes; Perin, Charles; Wood, Jo; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, Tatiana
    In the visualization community, it is often assumed that visual data storytelling increases memorability and engagement, making it more effective at communicating information. However, many assumptions about the efficacy of storytelling in visualization lack empirical evaluation. Contributing to an emerging body of work, we study whether selected techniques commonly used in visual data storytelling influence people's attitudes towards immigration. We compare (a) personal visual narratives designed to generate empathy; (b) structured visual narratives of aggregates of people; and (c) an exploratory visualization without narrative acting as a control condition. We conducted two crowdsourced between-subject studies comparing the three conditions, each with 300 participants. To assess the differences in attitudes between conditions, we adopted established scales from the social sciences used in the European Social Survey (ESS). Although we found some differences between conditions, the effects on people's attitudes are smaller than we expected. Our findings suggest that we need to be more careful when it comes to our expectations about the effects visual data storytelling can have on attitudes.
  • Item
    Sketching Vocabulary for Crowd Motion
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Mathew, C. D. Tharindu; Benes, Bedrich; Aliaga, Daniel; Dominik L. Michels; Soeren Pirk
    This paper proposes and evaluates a sketching language to author crowd motion. It focuses on the path, speed, thickness, and density parameters of crowd motion. A sketch-based vocabulary is proposed for each parameter and evaluated in a user study against complex crowd scenes. A sketch recognition pipeline converts the sketches into a crowd simulation. The user study results show that 1) participants at various skill levels and can draw accurate crowd motion through sketching, 2) certain sketch styles lead to a more accurate representation of crowd parameters, and 3) sketching allows to produce complex crowd motions in a few seconds. The results show that some styles although accurate actually are less preferred over less accurate ones.
  • Item
    Optimal Axes for Data Value Estimation in Star Coordinates and Radial Axes Plots
    (The Eurographics Association and John Wiley & Sons Ltd., 2021) Rubio-Sánchez, Manuel; Lehmann, Dirk J.; Sanchez, Alberto; Rojo-Álvarez, Jose Luis; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana von
    Radial axes plots are projection methods that represent high-dimensional data samples as points on a two-dimensional plane. These techniques define mappings through a set of axis vectors, each associated with a data variable, which users can manipulate interactively to create different plots and analyze data from multiple points of view. However, updating the direction and length of an axis vector is far from trivial. Users must consider the data analysis task, domain knowledge, the directions in which values should increase, the relative importance of each variable, or the correlations between variables, among other factors. Another issue is the difficulty to approximate high-dimensional data values in the two-dimensional visualizations, which can hamper searching for data with particular characteristics, analyzing the most common data values in clusters, inspecting outliers, etc. In this paper we present and analyze several optimization approaches for enhancing radial axes plots regarding their ability to represent high-dimensional data values. The techniques can be used not only to approximate data values with greater accuracy, but also to guide users when updating axis vectors or extending visualizations with new variables, since they can reveal poor choices of axis vectors. The optimal axes can also be included in nonlinear plots. In particular, we show how they can be used within RadViz to assess the quality of a variable ordering. The in-depth analysis carried out is useful for visualization designers developing radial axes techniques, or planning to incorporate axes into other visualization methods.
  • Item
    LineageD: An Interactive Visual System for Plant Cell Lineage Assignments based on Correctable Machine Learning
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Hong, Jiayi; Trubuil, Alain; Isenberg, Tobias; Borgo, Rita; Marai, G. Elisabeta; Schreck, Tobias
    We describe LineageD-a hybrid web-based system to predict, visualize, and interactively adjust plant embryo cell lineages. Currently, plant biologists explore the development of an embryo and its hierarchical cell lineage manually, based on a 3D dataset that represents the embryo status at one point in time. This human decision-making process, however, is time-consuming, tedious, and error-prone due to the lack of integrated graphical support for specifying the cell lineage. To fill this gap, we developed a new system to support the biologists in their tasks using an interactive combination of 3D visualization, abstract data visualization, and correctable machine learning to modify the proposed cell lineage. We use existing manually established cell lineages to obtain a neural network model. We then allow biologists to use this model to repeatedly predict assignments of a single cell division stage. After each hierarchy level prediction, we allow them to interactively adjust the machine learning based assignment, which we then integrate into the pool of verified assignments for further predictions. In addition to building the hierarchy this way in a bottom-up fashion, we also offer users to divide the whole embryo and create the hierarchy tree in a top-down fashion for a few steps, improving the ML-based assignments by reducing the potential for wrong predictions. We visualize the continuously updated embryo and its hierarchical development using both 3D spatial and abstract tree representations, together with information about the model's confidence and spatial properties. We conducted case study validations with five expert biologists to explore the utility of our approach and to assess the potential for LineageD to be used in their daily workflow. We found that the visualizations of both 3D representations and abstract representations help with decision making and the hierarchy tree top-down building approach can reduce assignments errors in real practice.
  • Item
    Neural Flow Map Reconstruction
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Sahoo, Saroj; Lu, Yuzhe; Berger, Matthew; Borgo, Rita; Marai, G. Elisabeta; Schreck, Tobias
    In this paper we present a reconstruction technique for the reduction of unsteady flow data based on neural representations of time-varying vector fields. Our approach is motivated by the large amount of data typically generated in numerical simulations, and in turn the types of data that domain scientists can generate in situ that are compact, yet useful, for post hoc analysis. One type of data commonly acquired during simulation are samples of the flow map, where a single sample is the result of integrating the underlying vector field for a specified time duration. In our work, we treat a collection of flow map samples for a single dataset as a meaningful, compact, and yet incomplete, representation of unsteady flow, and our central objective is to find a representation that enables us to best recover arbitrary flow map samples. To this end, we introduce a technique for learning implicit neural representations of time-varying vector fields that are specifically optimized to reproduce flow map samples sparsely covering the spatiotemporal domain of the data. We show that, despite aggressive data reduction, our optimization problem - learning a function-space neural network to reproduce flow map samples under a fixed integration scheme - leads to representations that demonstrate strong generalization, both in the field itself, and using the field to approximate the flow map. Through quantitative and qualitative analysis across different datasets we show that our approach is an improvement across a variety of data reduction methods, and across a variety of measures ranging from improved vector fields, flow maps, and features derived from the flow map.
  • Item
    Color Nameability Predicts Inference Accuracy in Spatial Visualizations
    (The Eurographics Association and John Wiley & Sons Ltd., 2021) Reda, Khairi; Salvi, Amey A.; Gray, Jack; Papka, Michael E.; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana von
    Color encoding is foundational to visualizing quantitative data. Guidelines for colormap design have traditionally emphasized perceptual principles, such as order and uniformity. However, colors also evoke cognitive and linguistic associations whose role in data interpretation remains underexplored. We study how two linguistic factors, name salience and name variation, affect people's ability to draw inferences from spatial visualizations. In two experiments, we found that participants are better at interpreting visualizations when viewing colors with more salient names (e.g., prototypical 'blue', 'yellow', and 'red' over 'teal', 'beige', and 'maroon'). The effect was robust across four visualization types, but was more pronounced in continuous (e.g., smooth geographical maps) than in similar discrete representations (e.g., choropleths). Participants' accuracy also improved as the number of nameable colors increased, although the latter had a less robust effect. Our findings suggest that color nameability is an important design consideration for quantitative colormaps, and may even outweigh traditional perceptual metrics. In particular, we found that the linguistic associations of color are a better predictor of performance than the perceptual properties of those colors. We discuss the implications and outline research opportunities. The data and materials for this study are available at https://osf.io/asb7n
  • Item
    TourVis: Narrative Visualization of Multi-Stage Bicycle Races
    (The Eurographics Association and John Wiley & Sons Ltd., 2021) Díaz, Jose; Fort, Marta; Vázquez, Pere-Pau; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana von
    There are many multiple-stage racing competitions in various sports such as swimming, running, or cycling. The wide availability of affordable tracking devices facilitates monitoring the position along with the race of all participants, even for non-professional contests. Getting real-time information of contenders is useful but also unleashes the possibility of creating more complex visualization systems that ease the understanding of the behavior of all participants during a simple stage or throughout the whole competition. In this paper we focus on bicycle races, which are highly popular, especially in Europe, being the Tour de France its greatest exponent. Current visualizations from TV broadcasting or real-time tracking websites are useful to understand the current stage status, up to a certain extent. Unfortunately, still no current system exists that visualizes a whole multi-stage contest in such a way that users can interactively explore the relevant events of a single stage (e.g. breakaways, groups, virtual leadership: : :), as well as the full competition. In this paper, we present an interactive system that is useful both for aficionados and professionals to visually analyze the development of multi-stage cycling competitions.
  • Item
    Implicit Modeling of Patient-Specific Aortic Dissections with Elliptic Fourier Descriptors
    (The Eurographics Association and John Wiley & Sons Ltd., 2021) Mistelbauer, Gabriel; Rössl, Christian; Bäumler, Kathrin; Preim, Bernhard; Fleischmann, Dominik; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana von
    Aortic dissection is a life-threatening vascular disease characterized by abrupt formation of a new flow channel (false lumen) within the aortic wall. Survivors of the acute phase remain at high risk for late complications, such as aneurysm formation, rupture, and death. Morphologic features of aortic dissection determine not only treatment strategies in the acute phase (surgical vs. endovascular vs. medical), but also modulate the hemodynamics in the false lumen, ultimately responsible for late complications. Accurate description of the true and false lumen, any communications across the dissection membrane separating the two lumina, and blood supply from each lumen to aortic branch vessels is critical for risk prediction. Patient-specific surface representations are also a prerequisite for hemodynamic simulations, but currently require time-consuming manual segmentation of CT data. We present an aortic dissection cross-sectional model that captures the varying aortic anatomy, allowing for reliable measurements and creation of high-quality surface representations. In contrast to the traditional spline-based cross-sectional model, we employ elliptic Fourier descriptors, which allows users to control the accuracy of the cross-sectional contour of a flow channel. We demonstrate (i) how our approach can solve the requirements for generating surface and wall representations of the flow channels, (ii) how any number of communications between flow channels can be specified in a consistent manner, and (iii) how well branches connected to the respective flow channels are handled. Finally, we discuss how our approach is a step forward to an automated generation of surface models for aortic dissections from raw 3D imaging segmentation masks.
  • Item
    Sunspot Plots: Model-based Structure Enhancement for Dense Scatter Plots
    (The Eurographics Association and John Wiley & Sons Ltd., 2020) Trautner, Thomas; Bolte, Fabian; Stoppel, Sergej; Bruckner, Stefan; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, Tatiana
    Scatter plots are a powerful and well-established technique for visualizing the relationships between two variables as a collection of discrete points. However, especially when dealing with large and dense data, scatter plots often exhibit problems such as overplotting, making the data interpretation arduous. Density plots are able to overcome these limitations in highly populated regions, but fail to provide accurate information of individual data points. This is particularly problematic in sparse regions where the density estimate may not provide a good representation of the underlying data. In this paper, we present sunspot plots, a visualization technique that communicates dense data as a continuous data distribution, while preserving the discrete nature of data samples in sparsely populated areas. We furthermore demonstrate the advantages of our approach on typical failure cases of scatter plots within synthetic and real-world data sets and validate its effectiveness in a user study.
  • Item
    Co-creating Visualizations: A First Evaluation with Social Science Researchers
    (The Eurographics Association and John Wiley & Sons Ltd., 2020) Molina León, Gabriela; Breiter, Andreas; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, Tatiana
    Co-creation is a design method where designers and domain experts work together to develop a product. In this paper, we present and evaluate the use of co-creation to design a visual information system with social science researchers in order to explore and analyze their data. Co-creation proposes involving the future users in the design process to ensure that they play a critical role in the design, and to increase the chances of long-term adoption. We evaluated the co-creation process through surveys, interviews and a user study. According to the participants' feedback, they felt listened to through co-creation, and considered the methodology helpful to develop visualizations that support their research in the near future. However, participation was far from perfect, particularly early career researchers showed limited interest in participating because they did not see the process as beneficial for their research publication goals. We summarize benefits and limitations of co-creation, together with our recommendations, as lessons learned.