22 results
Search Results
Now showing 1 - 10 of 22
Item Learning to Trace: Expressive Line Drawing Generation from Photographs(The Eurographics Association and John Wiley & Sons Ltd., 2019) Inoue, Naoto; Ito, Daichi; Xu, Ning; Yang, Jimei; Price, Brian; Yamasaki, Toshihiko; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonIn this paper, we present a new computational method for automatically tracing high-resolution photographs to create expressive line drawings. We define expressive lines as those that convey important edges, shape contours, and large-scale texture lines that are necessary to accurately depict the overall structure of objects (similar to those found in technical drawings) while still being sparse and artistically pleasing. Given a photograph, our algorithm extracts expressive edges and creates a clean line drawing using a convolutional neural network (CNN). We employ an end-to-end trainable fully-convolutional CNN to learn the model in a data-driven manner. The model consists of two networks to cope with two sub-tasks; extracting coarse lines and refining them to be more clean and expressive. To build a model that is optimal for each domain, we construct two new datasets for face/body and manga background. The experimental results qualitatively and quantitatively demonstrate the effectiveness of our model. We further illustrate two practical applications.Item Subdivision Schemes With Optimal Bounded Curvature Near Extraordinary Vertices(The Eurographics Association and John Wiley & Sons Ltd., 2018) Ma, Yue; Ma, Weiyin; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesWe present a novel method to construct subdivision stencils near extraordinary vertices with limit surfaces having optimal bounded curvature at extraordinary positions. With the proposed method, subdivision stencils for newly inserted and updated vertices near extraordinary vertices are first constructed to ensure subdivision with G1 continuity and bounded curvature at extraordinary positions. The remaining degrees of freedom of the constructed subdivision stencils are further used to optimize the eigenbasis functions corresponding to the subsubdominant eigenvalues of the subdivision with respect to G2 continuity constraints. We demonstrate the method by replacing subdivision stencils near extraordinary vertices for Catmull-Clark subdivision and compare the results with the original Catmull-Clark subdivision and previous tuning schemes known with small curvature variation near extraordinary positions. The results show that the proposed method produces subdivision schemes with better or comparable curvature behavior around extraordinary vertices with comparatively simple subdivision stencils.Item Visual Analysis of Charge Flow Networks for Complex Morphologies(The Eurographics Association and John Wiley & Sons Ltd., 2019) Kottravel, Sathish; Falk, Martin; Bin Masood, Talha; linares, mathieu; Hotz, Ingrid; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn the field of organic electronics, understanding complex material morphologies and their role in efficient charge transport in solar cells is extremely important. Related processes are studied using the Ising model and Kinetic Monte Carlo simulations resulting in large ensembles of stochastic trajectories. Naive visualization of these trajectories, individually or as a whole, does not lead to new knowledge discovery through exploration. In this paper, we present novel visualization and exploration methods to analyze this complex dynamic data, which provide succinct and meaningful abstractions leading to scientific insights. We propose a morphology abstraction yielding a network composed of material pockets and the interfaces, which serves as backbone for the visualization of the charge diffusion. The trajectory network is created using a novel way of implicitly attracting the trajectories to the skeleton of the morphology relying on a relaxation process. Each individual trajectory is then represented as a connected sequence of nodes in the skeleton. The final network summarizes all of these sequences in a single aggregated network. We apply our method to three different morphologies and demonstrate its suitability for exploring this kind of data.Item VIAN: A Visual Annotation Tool for Film Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2019) Halter, Gaudenz; Ballester-Ripoll, Rafael; Flueckiger, Barbara; Pajarola, Renato; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWhile color plays a fundamental role in film design and production, existing solutions for film analysis in the digital humanities address perceptual and spatial color information only tangentially. We introduce VIAN, a visual film annotation system centered on the semantic aspects of film color analysis. The tool enables expert-assessed labeling, curation, visualization and classification of color features based on their perceived context and aesthetic quality. It is the first of its kind that incorporates foreground-background information made possible by modern deep learning segmentation methods. The proposed tool seamlessly integrates a multimedia data management system, so that films can undergo a full color-oriented analysis pipeline.Item Watercolor Woodblock Printing with Image Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2018) Panotopoulou, Athina; Paris, Sylvain; Whiting, Emily; Gutierrez, Diego and Sheffer, AllaWatercolor paintings have a unique look that mixes subtle color gradients and sophisticated diffusion patterns. This makes them immediately recognizable and gives them a unique appeal. Creating such paintings requires advanced skills that are beyond the reach of most people. Even for trained artists, producing several copies of a painting is a tedious task. One can resort to scanning an existing painting and printing replicas, but these are all identical and have lost an essential characteristic of a painting, its uniqueness. We address these two issues with a technique to fabricate woodblocks that we later use to create watercolor prints. The woodblocks can be reused to produce multiple copies but each print is unique due to the physical process that we introduce. We also design an image processing pipeline that helps users to create the woodblocks and describe a protocol that produces prints by carefully controlling the interplay between the paper, ink pigments, and water so that the final piece depicts the desired scene while exhibiting the distinctive features of watercolor. Our technique enables anyone with the resources to produce watercolor prints.Item Sit & Relax: Interactive Design of Body-Supporting Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2018) Leimer, Kurt; Birsak, Michael; Rist, Florian; Musialski, Przemyslaw; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesWe propose a novel method for interactive design of well-fitting body-supporting surfaces that is driven by the pressure distribution on the body's surface. Our main contribution is an interactive modeling system that utilizes captured body poses and computes an importance field that is proportional to the pressure distribution on the body for a given pose. This distribution indicates where the body should be supported in order to easily hold a particular pose, which is one of the measures of comfortable sitting. Using our approximation, we propose the entire workflow for interactive design of C2 smooth surfaces which serve as seats, or generally, as body supporting furniture for comfortable sitting. Finally, we also provide a design tool for RHINOCEROS/GRASSHOPPER that allows for interactive creation of single designs or entire multi-person sitting scenarios. We also test the tool with design students and present several results. Our method aims at interactive design in order to help designers to create appropriate surfaces digitally without additional empirical design passes.Item Light Optimization for Detail Highlighting(The Eurographics Association and John Wiley & Sons Ltd., 2018) Gkaravelis, Anastasios; Papaioannou, Georgios; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesIn this paper we propose an effective technique for the automatic arrangement of spot lights and other luminaires on or near user-provided arbitrary mounting surfaces in order to highlight the geometric details of complex objects. Since potential applications include the lighting design for exhibitions and similar installations, the method takes into account obstructing geometry and potential occlusion from visitors and other non-permanent blocking geometry. Our technique generates the most appropriate position and orientation for light sources based on a local contrast maximization near salient geometric features and a clustering mechanism, producing consistent and view-independent results, with minimal user intervention. We validate our method with realistic test cases including multiple and disjoint exhibits as well as high occlusion scenarios.Item Analyzing Residue Surface Proximity to Interpret Molecular Dynamics(The Eurographics Association and John Wiley & Sons Ltd., 2018) Lichtenberg, Nils; Menges, Raphael; Ageev, Vladimir; George, Ajay Abisheck Paul; Heimer, Pascal; Imhof, Diana; Lawonn, Kai; Jeffrey Heer and Heike Leitte and Timo RopinskiThe surface of a molecule holds important information about the interaction behavior with other molecules. In dynamic folding or docking processes, residues of amino acids with different properties change their position within the molecule over time. The atoms of the residues that are accessible to the solvent can directly contribute to binding interactions, while residues buried within the molecular structure contribute to the stability of the molecule. Understanding patterns and causality of structural changes is important for experts in the pharmaceutical domain, e.g., in the process of drug design. We apply an iterative computation of the Solvent Accessible Surface in order to extract virtual layers of a molecule. The extraction allows to track the movement of residues in the body of the molecule, with respect to the distance of the residue to the surface or the core during dynamics simulations. We visualize the obtained layer information for the complete time span of the molecular dynamics simulation as a 2D-map and for individual time-steps as a 3D-representation of the molecule. The data acquisition has been implemented alongside with further analysis functionality in a prototypical application, which is available to the public domain. We underline the feasibility of our approach with a study from the pharmaceutical domain, where our approach has been used for novel insights into the folding behavior of μ-conotoxins.Item Curvature Continuity Conditions Between Adjacent Toric Surface Patches(The Eurographics Association and John Wiley & Sons Ltd., 2018) Sun, Lanyin; Zhu, Chungang; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesToric surface patch is the multi-sided generalization of classical Bézier surface patch. Geometric continuity of the parametric surface patches plays a crucial role in geometric modeling. In this paper, the necessary and sufficient conditions of curvature continuity between toric surface patches are illustrated with the theory of toric degeneration. Furthermore, some practical sufficient conditions of curvature continuity of toric surface patches are also developed.Item Exploratory Stage Lighting Design using Visual Objectives(The Eurographics Association and John Wiley & Sons Ltd., 2019) Shimizu, Evan; Paris, Sylvain; Fisher, Matthew; Yumer, Ersin; Fatahalian, Kayvon; Alliez, Pierre and Pellacini, FabioLighting is a critical element of theater. A lighting designer is responsible for drawing the audience's attention to a specific part of the stage, setting time of day, creating a mood, and conveying emotions. Designers often begin the lighting design process by collecting reference visual imagery that captures different aspects of their artistic intent. Then, they experiment with various lighting options to determine which ideas work best on stage. However, modern stages contain tens to hundreds of lights, and setting each light source's parameters individually to realize an idea is both tedious and requires expert skill. In this paper, we describe an exploratory lighting design tool based on feedback from professional designers. The system extracts abstract visual objectives from reference imagery and applies them to target regions of the stage. Our system can rapidly generate plausible design candidates that embody the visual objectives through a Gibbs sampling method, and present them as a design gallery for rapid exploration and iterative refinement. We demonstrate that the resulting system allows lighting designers of all skill levels to quickly create and communicate complex designs, even for scenes containing many color-changing lights.