4 results
Search Results
Now showing 1 - 4 of 4
Item HairControl: A Tracking Solution for Directable Hair Simulation(The Eurographics Association and John Wiley & Sons Ltd., 2018) Milliez, Antoine; Sumner, Robert W.; Gross, Markus; Thomaszewski, Bernhard; Thuerey, Nils and Beeler, ThaboWe present a method for adding artistic control to physics-based hair simulation. Taking as input an animation of a coarse set of guide hairs, we constrain a subsequent higher-resolution simulation of detail hairs to follow the input motion in a spatially-averaged sense. The resulting high-resolution motion adheres to the artistic intent, but is enhanced with detailed deformations and dynamics generated by physics-based simulation. The technical core of our approach is formed by a set of tracking constraints, requiring the center of mass of a given subset of detail hair to maintain its position relative to a reference point on the corresponding guide hair. As a crucial element of our formulation, we introduce the concept of dynamicallychanging constraint targets that allow reference points to slide along the guide hairs to provide sufficient flexibility for natural deformations. We furthermore propose to regularize the null space of the tracking constraints based on variance minimization, effectively controlling the amount of spread in the hair. We demonstrate the ability of our tracking solver to generate directable yet natural hair motion on a set of targeted experiments and show its application to production-level animations.Item Semantic Segmentation for Line Drawing Vectorization Using Neural Networks(The Eurographics Association and John Wiley & Sons Ltd., 2018) Kim, Byungsoo; Wang, Oliver; Öztireli, A. Cengiz; Gross, Markus; Gutierrez, Diego and Sheffer, AllaIn this work, we present a method to vectorize raster images of line art. Inverting the rasterization procedure is inherently ill-conditioned, as there exist many possible vector images that could yield the same raster image. However, not all of these vector images are equally useful to the user, especially if performing further edits is desired. We therefore define the problem of computing an instance segmentation of the most likely set of paths that could have created the raster image. Once the segmentation is computed, we use existing vectorization approaches to vectorize each path, and then combine all paths into the final output vector image. To determine which set of paths is most likely, we train a pair of neural networks to provide semantic clues that help resolve ambiguities at intersection and overlap regions. These predictions are made considering the full context of the image, and are then globally combined by solving a Markov Random Field (MRF). We demonstrate the flexibility of our method by generating results on character datasets, a synthetic random line dataset, and a dataset composed of human drawn sketches. For all cases, our system accurately recovers paths that adhere to the semantics of the drawings.Item Visualizing the Phase Space of Heterogeneous Inertial Particles in 2D Flows(The Eurographics Association and John Wiley & Sons Ltd., 2018) Rojo, Irene Baeza; Gross, Markus; Günther, Tobias; Jeffrey Heer and Heike Leitte and Timo RopinskiIn many scientific disciplines, the motion of finite-sized objects in fluid flows plays an important role, such as in brownout engineering, sediment transport, oceanology or meteorology. These finite-sized objects are called inertial particles and, in contrast to traditional tracer particles, their motion depends on their current position, their own particle velocity, the time and their size. Thus, the visualization of their motion becomes a high-dimensional problem that entails computational and perceptual challenges. So far, no visualization explored and visualized the particle trajectories under variation of all seeding parameters. In this paper, we propose three coordinated views that visualize the different aspects of the high-dimensional space in which the particles live. We visualize the evolution of particles over time, showing that particles travel different distances in the same time, depending on their size. The second view provides a clear illustration of the trajectories of different particle sizes and allows the user to easily identify differences due to particle size. Finally, we embed the trajectories in the space-velocity domain and visualize their distance to an attracting manifold using ribbons. In all views, we support interactive linking and brushing, and provide abstraction through density volumes that are shown by direct volume rendering and isosurface slabs. Using our method, users gain deeper insights into the dynamics of inertial particles in 2D fluids, including size-dependent separation, preferential clustering and attraction. We demonstrate the effectiveness of our method in multiple steady and unsteady 2D flows.Item PointProNets: Consolidation of Point Clouds with Convolutional Neural Networks(The Eurographics Association and John Wiley & Sons Ltd., 2018) Roveri, Riccardo; Öztireli, A. Cengiz; Pandele, Ioana; Gross, Markus; Gutierrez, Diego and Sheffer, AllaWith the widespread use of 3D acquisition devices, there is an increasing need of consolidating captured noisy and sparse point cloud data for accurate representation of the underlying structures. There are numerous algorithms that rely on a variety of assumptions such as local smoothness to tackle this ill-posed problem. However, such priors lead to loss of important features and geometric detail. Instead, we propose a novel data-driven approach for point cloud consolidation via a convolutional neural network based technique. Our method takes a sparse and noisy point cloud as input, and produces a dense point cloud accurately representing the underlying surface by resolving ambiguities in geometry. The resulting point set can then be used to reconstruct accurate manifold surfaces and estimate surface properties. To achieve this, we propose a generative neural network architecture that can input and output point clouds, unlocking a powerful set of tools from the deep learning literature. We use this architecture to apply convolutional neural networks to local patches of geometry for high quality and efficient point cloud consolidation. This results in significantly more accurate surfaces, as we illustrate with a diversity of examples and comparisons to the state-of-the-art.