3 results
Search Results
Now showing 1 - 3 of 3
Item Deep Kernel Density Estimation for Photon Mapping(The Eurographics Association and John Wiley & Sons Ltd., 2020) Zhu, Shilin; Xu, Zexiang; Jensen, Henrik Wann; Su, Hao; Ramamoorthi, Ravi; Dachsbacher, Carsten and Pharr, MattRecently, deep learning-based denoising approaches have led to dramatic improvements in low sample-count Monte Carlo rendering. These approaches are aimed at path tracing, which is not ideal for simulating challenging light transport effects like caustics, where photon mapping is the method of choice. However, photon mapping requires very large numbers of traced photons to achieve high-quality reconstructions. In this paper, we develop the first deep learning-based method for particlebased rendering, and specifically focus on photon density estimation, the core of all particle-based methods. We train a novel deep neural network to predict a kernel function to aggregate photon contributions at shading points. Our network encodes individual photons into per-photon features, aggregates them in the neighborhood of a shading point to construct a photon local context vector, and infers a kernel function from the per-photon and photon local context features. This network is easy to incorporate in many previous photon mapping methods (by simply swapping the kernel density estimator) and can produce high-quality reconstructions of complex global illumination effects like caustics with an order of magnitude fewer photons compared to previous photon mapping methods. Our approach largely reduces the required number of photons, significantly advancing the computational efficiency in photon mapping.Item Photorealistic Material Editing Through Direct Image Manipulation(The Eurographics Association and John Wiley & Sons Ltd., 2020) Zsolnai-Fehér, Károly; Wonka, Peter; Wimmer, Michael; Dachsbacher, Carsten and Pharr, MattCreating photorealistic materials for light transport algorithms requires carefully fine-tuning a set of material properties to achieve a desired artistic effect. This is typically a lengthy process that involves a trained artist with specialized knowledge. In this work, we present a technique that aims to empower novice and intermediate-level users to synthesize high-quality photorealistic materials by only requiring basic image processing knowledge. In the proposed workflow, the user starts with an input image and applies a few intuitive transforms (e.g., colorization, image inpainting) within a 2D image editor of their choice, and in the next step, our technique produces a photorealistic result that approximates this target image. Our method combines the advantages of a neural network-augmented optimizer and an encoder neural network to produce high-quality output results within 30 seconds. We also demonstrate that it is resilient against poorly-edited target images and propose a simple extension to predict image sequences with a strict time budget of 1-2 seconds per image.Item A Comprehensive Theory and Variational Framework for Anti-aliasing Sampling Patterns(The Eurographics Association and John Wiley & Sons Ltd., 2020) Öztireli, A. Cengiz; Dachsbacher, Carsten and Pharr, MattIn this paper, we provide a comprehensive theory of anti-aliasing sampling patterns that explains and revises known results, and introduce a variational optimization framework to generate point patterns with any desired power spectra and anti-aliasing properties. We start by deriving the exact spectral expression for expected error in reconstructing a function in terms of power spectra of sampling patterns, and analyzing how the shape of power spectra is related to anti-aliasing properties. Based on this analysis, we then formulate the problem of generating anti-aliasing sampling patterns as constrained variational optimization on power spectra. This allows us to not rely on any parametric form, and thus explore the whole space of realizable spectra. We show that the resulting optimized sampling patterns lead to reconstructions with less visible aliasing artifacts, while keeping low frequencies as clean as possible. Although we focus on image plane sampling, our theory and algorithms apply in any dimensions, and the variational optimization framework can be utilized in all problems where point pattern characteristics are given or optimized.