Search Results

Now showing 1 - 10 of 15
  • Item
    3D-ize U! A Real-time 3D Head-model Texture Generator for Android
    (The Eurographics Association, 2011) Boi, Stefano; Sorrentino, Fabio; Marras, Stefano; Scateni, Riccardo; Andrea F. Abate and Michele Nappi and Genny Tortora
    Recently, the number of applications developed for smartphones has dramatically increased; however, at the moment, applications having the purpose of creating and displaying 3D models are quite rare. The goal of this work is to build an application that allows the user to see the virtual three-dimensional representations of their friends and interact with them. The main challenge is to achieve results similar to those that a computer would produce, optimizing the process to deal with the constraints due to the technology used. Since there are no similar mobile applications, this work will make possible to create a base onto which realizing applications that have customized 3D models as a common feature.
  • Item
    Two Examples of GPGPU Acceleration of Memory-intensive Algorithms
    (The Eurographics Association, 2010) Marras, Stefano; Mura, Claudio; Gobbetti, Enrico; Scateni, Riccardo; Scopigno, Roberto; Enrico Puppo and Andrea Brogni and Leila De Floriani
    The advent of GPGPU technologies has allowed for sensible speed-ups in many high-dimension, memory-intensive computational problems. In this paper we demonstrate the e ectiveness of such techniques by describing two applications of GPGPU computing to two di erent subfields of computer graphics, namely computer vision and mesh processing. In the first case, CUDA technology is employed to accelerate the computation of approximation of motion between two images, known also as optical flow. As for mesh processing, we exploit the massivelyparallel architecture of CUDA devices to accelerate the face clustering procedure that is employed in many recent mesh segmentation algorithms. In both cases, the results obtained so far are presented and thoroughly discussed, along with the expected future development of the work.
  • Item
    Natural Interaction and Computer Graphics Applications
    (The Eurographics Association, 2010) Iacolina, Samuel A.; Lai, Alessandro; Soro, Alessandro; Scateni, Riccardo; Enrico Puppo and Andrea Brogni and Leila De Floriani
    Natural Interaction with computers has been a challenging topic of research since the very beginning of the digital era and refers to the possibility, on the user s part, of exploiting natural abilities to control the machine and interpret its outputs. If in the infancy of computer graphics this meant using visual representation and pen pointing, nowadays more refined techniques are needed to fit the wide range of applications, from home entertainment to virtual and augmented reality. This paper describes some advances in gesture, tangible and surface computing, showing how such interaction models, if treated as a continuum, improve the usability, accessibility and overall experience of computer graphics applications.
  • Item
    Gestural Interaction for Robot Motion Control
    (The Eurographics Association, 2011) Broccia, Giuseppe; Livesu, Marco; Scateni, Riccardo; Andrea F. Abate and Michele Nappi and Genny Tortora
    Recent advances in gesture recognition made the problem of controlling a humanoid robot in the most natural possible way an interesting challenge. Learning from Demonstration field takes strong advantage from this kind of interaction since users who have no robotics knowledge are allowed to teach new tasks to robots easier than ever before. In this work we present a cheap and easy way to implement humanoid robot along with a visual interaction interface allowing users to control it. The visual system is based on the Microsoft Kinect's RGB-D camera. Users can deal with the robot just by standing in front of the depth camera and mimicking a particular task they want to be performed by the robot. Our framework is cheap, easy to reproduce, and does not strictly depend on the particular underlying sensor or gesture recognition system.
  • Item
    Skeleton Lab: an Interactive Tool to Create, Edit, and Repair Curve-Skeletons
    (The Eurographics Association, 2015) Barbieri, Simone; Meloni, Pietro; Usai, Francesco; Scateni, Riccardo; Andrea Giachetti and Silvia Biasotti and Marco Tarini
    Curve-skeletons are well known shape descriptors, able to encode topological and structural information of a shape. The range of applications in which they are used comprises, to name a few, computer animation, shape matching, modelling and remeshing. Different tools for automatically extracting the curve-skeleton for a given input mesh are currently available, as well as inverse skeletonization tools, where a user-defined skeleton is taken as input in order to build a mesh that reflects the encoded structure. Although their use is broad, an automatically extracted curve-skeleton is usually not well-suited for the next pipeline step in which they will be used. We present a tool for creating, editing and repairing curve-skeletons whose aim is to allow users to obtain, within minutes, curve-skeletons that are tailored for their specific task.
  • Item
    AR Turn-by-turn Navigation in Small Urban Areas and Information Browsing
    (The Eurographics Association, 2014) Cherchi, Gianmarco; Sorrentino, Fabio; Scateni, Riccardo; Andrea Giachetti
    Navigation systems allow to discover cities and their urban areas easily and quickly, finding the shortest path to reach them and giving directions to users saving their time and energy. At present time, these systems are based over streets maps offered by the major mapping services like Tele Atlas, Navteq or OpenStreetMap. In recent years, thanks to the Google StreetView service it has been possible to discover main cities locations both indoor and outdoor. What is missing in this frame is the possibility to map small urban areas of small and medium sized cities, due to their lack of relevance for the big players. In this cities there could be very interesting areas for tourists. Example locations could be botanical gardens, archeological sites, protected natural areas among others. In this work we tried to set up a navigation system for limited extensions inside urban areas which permits to wander around and gives access to related information using augmented reality techniques. Due to the possible poor wireless coverage in these locations we designed an application that stores all required data on the user's device, splitting the information in packages according to the chosen language. A key issue was to achieve good results combining all these features in a single device with a small display, overwhelming the constraints due to the mobile environment.
  • Item
    A Seamless Pipeline for the Acquisition of the Body Shape: the Virtuoso Case Study
    (The Eurographics Association, 2017) Saba, Marianna; Sorrentino, Fabio; Muntoni, Alessandro; Casti, Sara; Cherchi, Gianmarco; Carcangiu, Alessandro; Corda, Fabrizio; Murru, Alessio; Spano, Lucio Davide; Scateni, Riccardo; Vitali, Ilaria; Salvetti, Ovidio; Magrini, Massimo; Villa, Andrea; Carboni, Andrea; Pascali, Maria Antonietta; Andrea Giachetti and Paolo Pingi and Filippo Stanco
    In this paper, we describe the design and the implementation of the demonstrator for the Virtuoso project, which aims at creating seamless support for fitness and wellness activities in touristic resort.We define the objectives of the user interface, the hardware and software setup, showing how we combined and exploited consumer-level devices for supporting 3D body scan, contact-less acquisition of physical parameters, exercise guidance and operator support.
  • Item
    Topological Operations on Triangle Meshes Using the OpenMesh Library
    (The Eurographics Association, 2008) Guggeri, Fabio; Marras, Stefano; Mura, Claudio; Scateni, Riccardo; Vittorio Scarano and Rosario De Chiara and Ugo Erra
    Recent advances in acquisition and modelling techniques led to generating an exponentially increasing amount of 3D shapes available both over the Internet or in specific databases. While the number grows it becomes more and more difficult to keep an organized knowledge over the content of this repositories. It is commonly intended that in the near future 3D shapes and models will be indexed and searched using procedure and instruments mimicking the same operations performed on images while using algorithms, data structures and instruments peculiar to the domain. In this context it is thus important to have tools for automatic characterization of 3D shapes, and skeletons and partitions are the two most prominent ones among them. In this paper we will describe an experience of building some of this tools on the top of a popular and robust library for manipulating meshes (OpenMesh). The preliminary results we present are promising enough to let us expect that the sum of the tools will be a useful aid to improving indexing and retrieval of digital 3D objects. The work presented here is part of a larger project: Three-Dimensional Shape Indexing and Retrieval Techniques (3-SHIRT), in collaboration with the Universities of Genoa, Padua, Udine, and Verona.
  • Item
    Polycube-based Decomposition for Fabrication
    (The Eurographics Association, 2017) Fanni, Filippo A.; Cherchi, Gianmarco; Scateni, Riccardo; Andrea Giachetti and Paolo Pingi and Filippo Stanco
    In recent years, fabrication technologies developed at a very fast pace. However, some limitations on shape and dimension still apply both to additive and subtractive manufacturing, and one way to bypass them could be the subdivision of the object to build. We present here a simple algorithm, based on the polycube representation of the original shape, able to decompose any model into simpler portions that are better fabricable. The shape is first mapped in a polycube and, then, split to take advantage of the simple polycube subdivision, thus having, quite easily, a partition of the model at hand. The main aim of this work is to study and analyse pros and cons of this simple subdivision scheme for fabrication, in view of using both the additive and subtractive pipelines. The proposed subdivision scheme is computationally light and it produces quite good results, especially when it is applied to models that can be easily decomposed in a small collection of cuboids. The obtained subdivisions are suitable for 3D printing.
  • Item
    RiftArt: Bringing Masterpieces in the Classroom through Immersive Virtual Reality
    (The Eurographics Association, 2015) Casu, Andrea; Spano, Lucio Davide; Sorrentino, Fabio; Scateni, Riccardo; Andrea Giachetti and Silvia Biasotti and Marco Tarini
    The recent development in consumer hardware lowers the cost barrier for adopting immersive Virtual Reality (VR) solutions, which could be an option for classroom use in the near future. In this paper, we introduce RiftArt, a VR tool for supporting the teaching and studying of Art History. Using RiftArt the teachers can configure virtual museum rooms, with artwork models inside, and enhance them with multimodal annotation. The environment supports both the teachers during the lesson and the students during rehearsal. The application, implemented completely using Web technologies, can be visualized on large screens and head mounted displays. The user test results advance the understanding of the VR effects on classroom usage. We demonstrate that VR increases the motivation of high-school students towards studying Art History and we provide an in-depth analysis of the factors that contribute to this result.