Search Results

Now showing 1 - 3 of 3
  • Item
    Yocto/GL: A Data-Oriented Library For Physically-Based Graphics
    (The Eurographics Association, 2019) Pellacini, Fabio; Nazzaro, Giacomo; Carra, Edoardo; Agus, Marco and Corsini, Massimiliano and Pintus, Ruggero
    In this paper we present Yocto/GL, a software library for computer graphics research and education. The library is written in C++ and targets execution on the CPU, with support for basic math, geometry and imaging utilities, path tracing and file IO. What distinguishes Yocto/GL from other similar projects is its minimalistic design and data-oriented programming style, which makes the library readable, extendible, and efficient. We developed Yocto/GL to meet our need, as a research group, of a simple and reliable codebase that lets us experiment with ease on research projects of various kind. After many iterations carried out over a few years, we settled on a design that we find effective for our purposes. In the hope of making our efforts valuable for the community, we share our experience in the development and make the library publicly available.
  • Item
    Relief Pattern Segmentation Using 2D-Grid Patches on a Locally Ordered Mesh Manifold
    (The Eurographics Association, 2019) Tortorici, Claudio; Vreshtazi, Denis; Berretti, Stefano; Werghi, Naoufel; Agus, Marco and Corsini, Massimiliano and Pintus, Ruggero
    The mesh manifold support has been analyzed to perform several different tasks. Recently, it emerged the need for new methods capable of analyzing relief patterns on the surface. In particular, a new and not investigated problem is that of segmenting the surface according to the presence of different relief patterns. In this paper, we introduce this problem and propose a new approach for segmenting such relief patterns (also called geometric texture) on the mesh-manifold. Operating on regular and ordered mesh, we design, in the first part of the paper, a new mesh re-sampling technique complying with this requirement. This technique ensures the best trade-off between mesh regularization and geometric texture preservation, when compared with competitive methods. In the second part, we present a novel scheme for segmenting a mesh surface into three classes: texturedsurface, non-textured surface, and edges (i.e., surfaces at the border between the two). This technique leverages the ordered structure of the mesh for deriving 2D-grid patches allowing us to approach the segmentation problem as a patch-classification technique using a CNN network in a transfer learning setting. Experiments performed on surface samples from the SHREC'18 contest show remarkable performance with an overall segmentation accuracy of over 99%.
  • Item
    Split and Mill: User Assisted Height-field Block Decomposition for Fabrication
    (The Eurographics Association, 2019) Muntoni, Alessandro; SPANO, LUCIO DAVIDE; Scateni, Riccardo; Agus, Marco and Corsini, Massimiliano and Pintus, Ruggero
    We present here Split and Mill: an interactive system for the manual volume decomposition of free form shapes. Our primary purpose is to generate portions respecting the properties allowing to mill them with a 3-axis milling machine. We show that a manual decomposition is competitive with the automatic partitioning when the user is skilled enough. We, thus, think that our tool can be beneficial for the practitioners in the field, and we release it as free software.