2 results
Search Results
Now showing 1 - 2 of 2
Item Path Tracing on Massively Parallel Neuromorphic Hardware(The Eurographics Association, 2012) Richmond, Paul; Allerton, David J.; Hamish Carr and Silvester CzannerRay tracing on parallel hardware has recently benefit from significant advances in the graphics hardware and associated software tools. Despite this, the SIMD nature of graphics card architectures is only able to perform well on groups of coherent rays which exhibit little in the way of divergence. This paper presents SpiNNaker, a massively parallel system based on low power ARM cores, as an architecture suitable for ray tracing applications. The asynchronous design allows us to demonstrate a linear performance increase with respect to the number of cores. The performance perWatt ratio achieved within the fixed point path tracing example presented is far greater than that of a multi-core CPU and similar to that of a GPU under optimal conditions.Item Light Clustering for Dynamic Image Based Lighting(The Eurographics Association, 2012) Staton, Sam; Debattista, Kurt; Bashford-Rogers, Thomas; Chalmers, Alan; Hamish Carr and Silvester CzannerHigh Dynamic Range (HDR) imagery has made it possible to relight virtual objects accurately with the captured lighting. This technique, called Image Based Lighting (IBL), is a commonly used to render scenes using real-world illumination. IBL has mostly been limited to static scenes due to limitations of HDR capture. However, recently there has been progress on developing devices which can capture HDR video sequences. These can be also be used to light virtual environments dynamically. If existing IBL algorithms are applied to this dynamic problem, temporal artifacts viewed as flickering can often arise due to samples being selected from different parts of the environment in consecutive frames. In this paper we present a method for efficiently rendering virtual scenarios with such captured sequences based on spatial and temporal clustering. Our proposed Dynamic IBL (DIBL) method improves temporal quality by suppressing flickering, and we demonstrate the application to fast previews of scenes lit by video environment maps.