5 results
Search Results
Now showing 1 - 5 of 5
Item Real-time Inextensible Hair with Volume and Shape(The Eurographics Association, 2015) Sánchez-Banderas, Rosa María; Barreiro, Héctor; García-Fernández, Ignacio; Pérez, Mariano; Mateu Sbert and Jorge Lopez-MorenoHair simulation is a common topic extensively studied in computer graphics. One of the many challenges in this field is simulating realistic hair in a real-time environment. In this paper, we propose a unified simulation scheme to consider three of the key features in hair simulation; inextensibility, shape preservation and hair-hair interaction. We use an extension to the Dynamic Follow the Leader (DFTL) method to include shape preservation. Our implementation is also coupled with a Lagrangian approach to address the hair-hair interaction dynamics. A GPU-friendly scheme is proposed that is able to exploit the massive parallelism these devices offer, being able to simulate thousands of strands in real-time. The method has been integrated in a game development platform with a shading model for rendering and several test applications have been developed using this implementation.Item Natural Phenomena as Metaphors for Visualization of Trend Data in Interactive Software Maps(The Eurographics Association, 2015) Würfel, Hannes; Trapp, Matthias; Limberger, Daniel; Döllner, Jürgen; Rita Borgo and Cagatay TurkaySoftware maps are a commonly used tool for code quality monitoring in software-development projects and decision making processes. While providing an important visualization technique for the hierarchical system structure of a single software revision, they lack capabilities with respect to the visualization of changes over multiple revisions. This paper presents a novel technique for visualizing the evolution of the software system structure based on software metric trends. These trend maps extend software maps by using real-time rendering techniques for natural phenomena yielding additional visual variables that can be effectively used for the communication of changes. Therefore, trend data is automatically computed by hierarchically aggregating software metrics. We demonstrate and discuss the presented technique using two real world data sets of complex software systems.Item Faster Ray-Traced Shadows for Hybrid Rendering of Fully Dynamic Scenes by Pre-BVH Culling(The Eurographics Association, 2015) Selgrad, Kai; Müller, Jonas; Stamminger, Marc; Andrea Giachetti and Silvia Biasotti and Marco TariniWith ever increasing ray traversal and hierarchy construction performance the application of ray tracing to problems often tackled by rasterization-based algorithms is becoming a viable alternative. This is especially desirable as the ground truth for these algorithms is often determined by using ray tracing and thus directly applying it is the simplest way to generate images satisfying the reference. In this paper we propose a very efficient pre-process to speed up the construction and traversal of sub-optimal, but fast-to-build hierarchies used for interactive ray tracing and show how it can be applied to shadow rays in a hybrid environment, where ray tracing is used to sample area lights for scene positions found and shaded via rasterization.Item An Interactive Algorithm for Virtual Patient Positioning(The Eurographics Association, 2015) Casafranca, Juan José; Sújar, Aaron; García, Marcos; Mateu Sbert and Jorge Lopez-MorenoIn the last years, Virtual Reality medical simulators are gaining importance, training new physicians in a safe environment. In order to improve the trainees' skills, these applications let them perform a specific medical procedure in different virtual patients with different anatomical variation. Typically, virtual patients are generated from medical imaging data sets, such as MRI (magnetic resonance imaging), CT (computed tomography) or US (ultra sound). Usually, these data are generally captured in specific subject position. This pose is different from the subjects' position required in the simulated specific medical procedure. This paper proposes a novel technique that allows adapting the virtual patient anatomy to any desired pose. Our algorithm follows a geometrically based approach with the intention of: (i) being independent of a proper mechanical description of the tissues which is rarely available and (ii) keeping our user interface running at interactive rates. We adapted the skeletal animation workflow to deal with internal anatomy models. Most of the stages of this workflow have been automated. The user intervention has been limited to the interactive pose selection process. Additionally, in order to refine the solutions provided by our geometric approach, we have designed an optimization phase to achieve more appealing results.Item Using Sketching to Control Heterogeneous Groups(The Eurographics Association, 2015) Allen, Thomas; Parvanov, Aleksandar; Knight, Sam; Maddock, Steve; Rita Borgo and Cagatay TurkayThe basic methods of interaction in strategy games with regards to controlling groups of units has largely remained the same since the first strategy games were released. Although the control systems in games today are effective and intuitive, they are somewhat limiting for the user in terms of achieving more complex goals. Recently, there has been research into using sketch-based systems as an alternate means of controlling a crowd, granting a higher level of control to the user while maintaining an easy to use and intuitive interface. So far, however, this has only been implemented for homogeneous groups. This paper describes the implementation of a sketch-based crowd control system for strategy games, which allows the user to exert a greater level of control over their armies by giving them the ability to control heterogeneous groups by using sub-group sketching to distinguish formations and paths for groups and sub-groups to adhere to.