4 results
Search Results
Now showing 1 - 4 of 4
Item Study of the Influence of User Characteristics on the Virtual Reality Presence(The Eurographics Association, 2018) Mayor, Jesús; Sánchez, Alberto; Raya, Laura; García-Fernández, Ignacio and Ureña, CarlosIn recent years, virtual reality has grown a lot in different areas of application, including ludic, social and research, being used by a large and growing number of users with different profiles. Presence is one of the most distinctive and important features of a virtual reality experience. The aim of this article is to study the most suitable areas of application for users and to analyze the influence of different characteristics of the user's profile in the perceived presence. We have tested the interest applications indicated by 159 subjects and we have designed an immersive virtual reality experience, testing the behavior and performance of 48 users. The results obtained show that gender can influence the perceptual sensation of presence in these types of virtual environments.Item Parallel Collision Detection Oriented to Distributed Memory Architectures for High-Resolution Meshes(The Eurographics Association, 2021) Novalbos, Marcos; Sánchez, Alberto; Silva, F. and Gutierrez, D. and Rodríguez, J. and Figueiredo, M.Higher resolution meshes should be used in graphics applications to make them as realistic as they can. However, they imply a high computational. Several approaches have been built to solve collision detection, although most of them do not take into account this feature. This paper presents a scalable parallel algorithm for collision detection designed for working with high resolution meshes. The algorithm is based on distributed memory architectures taking advantage of their benefits and overcoming their drawbacks.Item A Visual Interface for Feature Subset Selection Using Machine Learning Methods(The Eurographics Association, 2018) Rojo, Diego; Raya, Laura; Rubio-Sánchez, Manuel; Sánchez, Alberto; García-Fernández, Ignacio and Ureña, CarlosVisual representation of information remains a key part of exploratory data analysis. This is due to the high number of features in datasets and their increasing complexity, together with users' ability to visually understand information. One of the most common operations in exploratory data analysis is the selection of relevant features in the available data. In multidimensional scenarios, this task is often done with the help of automatic dimensionality reduction algorithms from the machine learning field. In this paper we develop a visual interface where users are integrated into the feature selection process of several machine learning algorithms. Users can work interactively with the algorithms in order to explore the data, compare the results and make the appropriate decisions about the feature selection process.Item A Prototype of a Scalable Multi-GPU Molecular Dynamics Simulator for Large Molecular Systems(The Eurographics Association, 2018) Nicolas-Barreales, Gonzalo; Novalbos, Marcos; Otaduy, Miguel Ángel; Sánchez, Alberto; García-Fernández, Ignacio and Ureña, CarlosParallel architectures, in the form of multi-core or multiple computers, have produced a major impact in the field of information technology. GPU devices, as an extreme example of parallel architectures, have been adapted to enable generic computation in massively parallel architectures. Molecular dynamics is a problem that fits perfectly such architectures, as it relies on the computation of many similar interactions between atoms. Moreover, large molecular systems require resources that exceed those available in a single computer, even multi-GPU computers. Therefore, the ideal architecture to simulate molecular dynamics is a distributed multi-GPU cluster, which consists of multiple interconnected computers with one or more GPUs each. A molecular dynamics simulation usually needs days, and even weeks of computation time to produce results that represent only a few microseconds of atom interactions. In contrast, distributed multi-GPU clusters allows us to develop an efficient and scalable simulator. This paper aims to develop a prototype of a molecular dynamics simulator for large molecular systems. It uses the GPU as the main computing device, using only the CPU to control the workflow. We have implemented parallel processing techniques to develop a fully scalable system.