14 results
Search Results
Now showing 1 - 10 of 14
Item Sketching for Real-time Control of Crowd Simulations(The Eurographics Association, 2017) Gonzalez, Luis Rene Montana; Maddock, Steve; Tao Ruan Wan and Franck VidalCrowd simulations are used in various fields such as entertainment, training systems and city planning. However, controlling the behaviour of the pedestrians typically involves tuning of the system parameters through trial and error, a time-consuming process relying on knowledge of a potentially complex parameter set. This paper presents an interactive graphical approach to control the simulation by sketching in the simulation environment. The user is able to sketch obstacles to block pedestrians and lines to force pedestrians to follow a specific path, as well as define spawn and exit locations for pedestrians. The obstacles and lines modify the underlying navigation representation and pedestrian trajectories are recalculated in real time. The FLAMEGPU framework is used for the simulation and the game engine Unreal is used for visualisation. We demonstrate the effectiveness of the approach using a range of scenarios, producing interactive editing and frame rates for tens of thousands of pedestrians. A comparison with the commercial software MassMotion is also given.Item Downsampling and Storage of Pre-Computed Gradients for Volume Rendering(The Eurographics Association, 2017) DÃaz-GarcÃa, Jesús; Brunet, Pere; Navazo, Isabel; Vázquez, Pere-Pau; Fco. Javier Melero and Nuria PelechanoThe way in which gradients are computed in volume datasets influences both the quality of the shading and the performance obtained in rendering algorithms. In particular, the visualization of coarse datasets in multi-resolution representations is affected when gradients are evaluated on-the-fly in the shader code by accessing neighbouring positions. This is not only a costly computation that compromises the performance of the visualization process, but also one that provides gradients of low quality that do not resemble the originals as much as desired because of the new topology of downsampled datasets. An obvious solution is to pre-compute the gradients and store them. Unfortunately, this originates two problems: First, the downsampling process, that is also prone to generate artifacts. Second, the limited bit size of storage itself causes the gradients to loss precision. In order to solve these issues, we propose a downsampling filter for pre-computed gradients that provides improved gradients that better match the originals such that the aforementioned artifacts disappear. Secondly, to address the storage problem, we present a method for the efficient storage of gradient directions that is able to minimize the minimum angle achieved among all representable vectors in a space of 3 bytes. We also provide several examples that show the advantages of the proposed approaches.Item Linear-Time Dynamics of Characters with Stiff Joints(The Eurographics Association, 2021) Hernández, Fernando; Garre, Carlos; Casillas, Rubén; Otaduy, Miguel A.; Silva, F. and Gutierrez, D. and RodrÃguez, J. and Figueiredo, M.Characters, like other articulated objects and structures, are typically simulated using articulated dynamics algorithms. There are efficient linear-time algorithms for the simulation of open-chain articulated bodies, but complexity grows notably under additional constraints such as joint limits, loops or contact, or if the bodies undergo stiff joint forces. This paper presents a linear-time algorithm for the simulation of open-chain articulated bodies with joint limits and stiff joint forces. This novel algorithm uses implicit integration to simulate stiff forces in a stable manner, and avoids drift by formulating joint constraints implicitly. One additional interesting feature of the algorithm is that its practical implementation entails only small modifications to a popular algorithm.Item A Simple Surface Tracking Method for Physically-Based 3D Water Simulations(The Eurographics Association, 2021) Amador, G.; Gomes, A.; Silva, F. and Gutierrez, D. and RodrÃguez, J. and Figueiredo, M.Water simulation, and more generically fluid simulation, is an important research topic in computer graphics. In 3D Eulerian Navier-Stokes-based water simulations, surface tracking and rendering are two delicate problems. The existing solutions to these problems (i.e., implicit surfaces-based approaches, height-fields, ray-tracing), are either to computationally intensive for real-time scenarios, or present bulge water surfaces (i.e., blobby water surfaces). In this paper, we propose a novel tracking algorithm for rendering water surfaces. Instead of tracking the flow of water using either level sets or height-fields, each cell of an 3D grid density value is directly measured in order to determine if it is either water, air, or water-air contact surface. The information in each cell is later used for the water surface splat rendering, using OpenGL vertex buffer objects.Item Procedural Modeling of Suspension Bridges(The Eurographics Association, 2021) Patow, Gustavo; Silva, F. and Gutierrez, D. and RodrÃguez, J. and Figueiredo, M.In this paper we introduce a method for designing a class of engineering structures, namely suspension bridges. These bridges are ubiquitous in the industrialized countries, often appearing in known city landscapes, yet they are complex enough that hand-based modeling is tedious and time consuming. We present a method that finds the right proportions for such a structure through an optimization method that tries to distribute the tower positions while maintaining cable width to be a finite number. By simultaneously optimizing the span and sag of the cables of a bridge, we optimize the geometry and soundness of the structure. We present the details of our technique together with examples illustrating its use, including comparisons with real structures.Item Real-Time Modelling and Rendering of Sprayed Concrete(The Eurographics Association, 2021) Vélez, G.; Matey, L.; Amundarain, A.; Ordás, F.; MarÃn, J.A.; Silva, F. and Gutierrez, D. and RodrÃguez, J. and Figueiredo, M.This paper presents a new real-time method to model and render how sprayed concrete is spread on a surface. The method not only models and renders deposits sprayed from any angle, any distance and with any concrete flow, but it is also able to compute the amount of deposited volume taking into account the percentage of material that rebounds. The proposed method has been developed for a real-time training simulator for concrete spraying machinery, where most of the algorithm is parallelised and computed in the GPU, leaving the CPU free for other computations. In this research, the method has been validated for its use on plain surfaces and tunnel walls, but it can be extended to other types of surfaces.Item Efficient Propagation of Light Field Edits(The Eurographics Association, 2021) Jarabo, Adrian; Masia, Belen; Gutierrez, Diego; Silva, F. and Gutierrez, D. and RodrÃguez, J. and Figueiredo, M.Light field editing is a complex task, due to the large amount of data and the need to keep consistency between views. This has hampered the creation of efficient edit propagation methods, similar to those existing for single images. We propose a framework to edit light fields at interactive rates, by propagating some sparse user edits in the full light field. This propagation is guided by a novel affinity function, which forces similar pixels (defined by our affinity space) to receive similar edits, thus ensuring consistency. To manage the light field's large amount of data, we propose a novel multi-dimensional downsampling technique: we first cluster pixels with high affinity, and then perform edit propagation over the downsampled data. We finally upsample back to the original full resolution, maintaining visual fidelity and view consistency between views.Item Augmented Reality for Web - A New Interaction Method Without Markers(The Eurographics Association, 2021) Silva, Luis F. A.; Silva, Frutuoso G. M.; Silva, F. and Gutierrez, D. and RodrÃguez, J. and Figueiredo, M.In the new age of omnipresent internet, browsers are accessible on every device in everyday's life. Thus it is also needed new interaction methods to facilitate the interaction through browser. Augmented reality is one of the techniques that is available now via browser. In this paper we present a new method of interaction without physical markers for augmented reality via browser. The first part of the paper describes the use of augmented reality via browser using physical markers and its limitations. In the second part, we propose a solution to solve the limitations of augmented reality using physical markers, i.e. we propose a new interaction method to manipulate virtual objects without using physical markers. Finally, we show a simple augmented web game based on the new interaction method proposed.Item Volume-Surface Collision Detection(The Eurographics Association, 2021) Ortegano, J.; Navarro, H.; Carmona, R.; Silva, F. and Gutierrez, D. and RodrÃguez, J. and Figueiredo, M.The presence or not of collisions between objects is usually required to study the interaction between them, increasing the realism in virtual environments. Collision detection between polygonal objects has been widely studied, and more recently some studies have been made concerning collisions between volume objects. Collision detection between volume datasets and polygonal objects is introduced in this work. This kind of mixed scenes appears naturally in many applications such as surgery simulation and volume edition. To detect the collision, first the volume dataset is represented by a single 3D texture. Then, a mapping from eye space to volume space is established, such as each mesh fragment has a 3D texture coordinate. The collision is verified by fragment during the rasterization stage. We use OpenGL R occlusion query extension to count the number of mesh fragments colliding with the volume. Our tests show that up to 3800 pairs of volume-mesh may be evaluated in one second.Item gVirtualXRay: Virtual X-Ray Imaging Library on GPU(The Eurographics Association, 2017) Sujar, Aaron; Meuleman, Andreas; Villard, Pierre-Frederic; GarcÃa, Marcos; Vidal, Franck; Tao Ruan Wan and Franck VidalWe present an Open-source library called gVirtualXRay to simulate realistic X-ray images in realtime. It implements the attenuation law (also called Beer-Lambert) on GPU. It takes into account the polychromatism of the beam spectra as well as the finite size of X-ray tubes. The library is written in C++ using modern OpenGL. It is fully portable and works on most common desktop/laptop computers. It has been tested on MS Windows, Linux, and Mac OS X. It supports a wide range of windowing solutions, such as FLTK, GLUT, GLFW3, Qt4, and Qt5. The library also offers realistic visual rendering of anatomical structures, including bones, liver, diaphragm and lungs. The accuracy of the X-ray images produced by gVirtualXRay's implementation has been validated using Geant4, a well established state-of-the-art Monte Carlo simulation toolkit developed by CERN. gVirtualXRay can be used in a wide range of applications where fast and accurate X-ray simulations from polygon meshes are needed, e.g. medical simulators for training purposes, simulation of tomography data acquisition with patient motion to include artefacts in reconstructed CT images, and deformable registration. Our application example package includes real-time respiration and X-ray simulation, CT acquisition and reconstruction, and iso-surfacing of implicit functions using Marching Cubes.