3 results
Search Results
Now showing 1 - 3 of 3
Item Two Examples of GPGPU Acceleration of Memory-intensive Algorithms(The Eurographics Association, 2010) Marras, Stefano; Mura, Claudio; Gobbetti, Enrico; Scateni, Riccardo; Scopigno, Roberto; Enrico Puppo and Andrea Brogni and Leila De FlorianiThe advent of GPGPU technologies has allowed for sensible speed-ups in many high-dimension, memory-intensive computational problems. In this paper we demonstrate the e ectiveness of such techniques by describing two applications of GPGPU computing to two di erent subfields of computer graphics, namely computer vision and mesh processing. In the first case, CUDA technology is employed to accelerate the computation of approximation of motion between two images, known also as optical flow. As for mesh processing, we exploit the massivelyparallel architecture of CUDA devices to accelerate the face clustering procedure that is employed in many recent mesh segmentation algorithms. In both cases, the results obtained so far are presented and thoroughly discussed, along with the expected future development of the work.Item Edge Adaptive and Energy Preserving Volume Upscaling for High Quality Volume Rendering(The Eurographics Association, 2010) Giachetti, Andrea; Guitián, J. A. Iglesias; Gobbetti, Enrico; Enrico Puppo and Andrea Brogni and Leila De FlorianiWe describe an edge-directed optimization-based method for volumetric data supersampling. The method is based on voxel splitting and iterative refinement performed with a greedy optimization driven by the smoothing of second order gray level derivatives and the assumption that the average gray level in the original voxels region cannot change. Due to these assumptions, the method, which is the 3D extension of a recently proposed technique, is particularly suitable for upscaling medical imaging data creating physically reasonable voxel values and overcoming the so-called partial volume effect. The good quality of the results obtained is demonstrated through experimental tests. Furthermore, we show how offline 3D upscaling of volumes can be coupled with recent techniques to perform high quality volume rendering of large datasets, obtaining a better inspection of medical volumetric dataItem An Application of Multiresolution Massive Surface Representations to the Simulation of Asteroid Missions(The Eurographics Association, 2010) Pintore, Giovanni; Combet, Roberto; Gobbetti, Enrico; Marton, Fabio; Turner, Russell; Enrico Puppo and Andrea Brogni and Leila De FlorianiWe report on a real-time application supporting fast, realistic real-time rendering of asteroid datasets, as well as collision detection and response between the asteroid and prototype robotic surface exploration vehicles. The system organizes the asteroid surface into a two-level multiresolution structure, which embeds a fine-grained perpatch spatial index within a coarse-grained patch-based structure. The coarse-grained structure, maintained out-of-core, is used for fast batched I/O and GPU accelerated rendering, while the per-patch fine-grained structure is used to accelerate raycasting and collision queries. The resulting system has been tested with a simple robot lander and surface exploration simulator. The system models gravity using mass particles uniformly distributed within the asteroid bodies. Real-time performance is achieved on a commodity platform with giga triangle representations of asteroids 25143 Itokawa and 433 Eros.