31 results
Search Results
Now showing 1 - 10 of 31
Item Geometry and Attribute Compression for Voxel Scenes(The Eurographics Association and John Wiley & Sons Ltd., 2016) Dado, Bas; Kol, Timothy R.; Bauszat, Pablo; Thiery, Jean-Marc; Eisemann, Elmar; Joaquim Jorge and Ming LinVoxel-based approaches are today's standard to encode volume data. Recently, directed acyclic graphs (DAGs) were successfully used for compressing sparse voxel scenes as well, but they are restricted to a single bit of (geometry) information per voxel. We present a method to compress arbitrary data, such as colors, normals, or reflectance information. By decoupling geometry and voxel data via a novel mapping scheme, we are able to apply the DAG principle to encode the topology, while using a palette-based compression for the voxel attributes, leading to a drastic memory reduction. Our method outperforms existing state-of-the-art techniques and is well-suited for GPU architectures. We achieve real-time performance on commodity hardware for colored scenes with up to 17 hierarchical levels (a 128K3 voxel resolution), which are stored fully in core.Item Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows(The Eurographics Association and John Wiley & Sons Ltd., 2016) Scandolo, Leonardo; Bauszat, Pablo; Eisemann, Elmar; Joaquim Jorge and Ming LinThe quality of shadow mapping is traditionally limited by texture resolution. We present a novel lossless compression scheme for high-resolution shadow maps based on precomputed multiresolution hierarchies. Traditional multiresolution trees can compactly represent homogeneous regions of shadow maps at coarser levels, but require many nodes for fine details. By conservatively adapting the depth map, we can significantly reduce the tree complexity. Our proposed method offers high compression rates, avoids quantization errors, exploits coherency along all data dimensions, and is well-suited for GPU architectures. Our approach can be applied for coherent shadow maps as well, enabling several applications, including high-quality soft shadows and dynamic lights moving on fixed-trajectories.Item Peripheral Retinal Image Simulation Based on Retina Shapes(The Eurographics Association, 2016) Dias, Catarina; Wick, Michael; Rifai, Katharina; Wahl, Siegfried; T. Bashford-Rogers and L. P. SantosWe present a method to render the image of a scene reaching the retina, the retinal image, taking into account human offaxis optical aberrations. To this end, we consider realistic wide-angle eye models that offer an anatomical description of the refractive structures of the eye as a set of lenses and accurately reproduce the optical aberrations in the periphery. We then combine these with representative retinal shapes and with distributed ray tracing. Due to the interplay between the eye model and the curved retina, we obtain a realistic simulation of the retinal image, not only foveally but also in the periphery.Item Lowering the Entry Barrier for Students Programming Virtual Reality Applications(The Eurographics Association, 2016) Lambers, Martin; Beatriz Sousa Santos and Jean-Michel DischlerIn Computer Graphics, it is common practice to accompany lectures with hands-on tutorials and/or project assignments that allow students to write and run their own interactive graphics applications. In the special case of Virtual Reality courses, this approach is difficult to maintain since the software requirements pose a high entry barrier to students. In this paper, we propose a technique to significantly simplify Virtual Reality application programming, and implement it in an easy-to-use framework that supports the full range of typical Virtual Reality hardware setups, from head-mounted displays to multi-node, multi-GPU render clusters. The framework lowers the entry barrier for students and allows them to focus on course goals instead of fighting software complexities.Item Animation Setup Transfer for 3D Characters(The Eurographics Association and John Wiley & Sons Ltd., 2016) Avril, Quentin; Ghafourzadeh, Donya; Ramachandran, Srinivasan; Fallahdoust, Sahel; Ribet, Sarah; Dionne, Olivier; Lasa, Martin de; Paquette, Eric; Joaquim Jorge and Ming LinWe present a general method for transferring skeletons and skinning weights between characters with distinct mesh topologies. Our pipeline takes as inputs a source character rig (consisting of a mesh, a transformation hierarchy of joints, and skinning weights) and a target character mesh. From these inputs, we compute joint locations and orientations that embed the source skeleton in the target mesh, as well as skinning weights to bind the target geometry to the new skeleton. Our method consists of two key steps. We first compute the geometric correspondence between source and target meshes using a semi-automatic method relying on a set of markers. The resulting geometric correspondence is then used to formulate attribute transfer as an energy minimization and filtering problem. We demonstrate our approach on a variety of source and target bipedal characters, varying in mesh topology and morphology. Several examples demonstrate that the target characters behave well when animated with either forward or inverse kinematics. Via these examples, we show that our method preserves subtle artistic variations; spatial relationships between geometry and joints, as well as skinning weight details, are accurately maintained. Our proposed pipeline opens up many exciting possibilities to quickly animate novel characters by reusing existing production assets.Item Two-Level Adaptive Sampling for Illumination Integrals using Bayesian Monte Carlo(The Eurographics Association, 2016) Marques, Ricardo; Bouville, Christian; Santos, Luis P.; Bouatouch, Kadi; T. Bashford-Rogers and L. P. SantosBayesian Monte Carlo (BMC) is a promising integration technique which considerably broadens the theoretical tools that can be used to maximize and exploit the information produced by sampling, while keeping the fundamental property of data dimension independence of classical Monte Carlo (CMC). Moreover, BMC uses information that is ignored in the CMC method, such as the position of the samples and prior stochastic information about the integrand, which often leads to better integral estimates. Nevertheless, the use of BMC in computer graphics is still in an incipient phase and its application to more evolved and widely used rendering algorithms remains cumbersome. In this article we propose to apply BMC to a two-level adaptive sampling scheme for illumination integrals. We propose an efficient solution for the second level quadrature computation and show that the proposed method outperforms adaptive quasi-Monte Carlo in terms of image error and high frequency noise.Item Texel Shading(The Eurographics Association, 2016) Hillesland, Karl E.; Yang, J. C.; T. Bashford-Rogers and L. P. SantosWe have developed a texture space shading system built on modern graphics hardware. It begins with a conventional rasterization stage, but records texel accesses as shading work rather than running a shade per pixel. Shading is performed by a separate compute stage, storing the results in a texture. As a baseline, the texels correspond to those required for mipmapped texturing. A final stage collects data from the texture. Storing results in a texture allows for reuse across frames. We also show how adapting shade rate to less than once per pixel further increases performance. We vary shading load to show when these techniques provide a performance win, with up to 4.1x speedup in our experiments at shading times less than 4 ms.Item Near-Instant Capture of High-Resolution Facial Geometry and Reflectance(The Eurographics Association and John Wiley & Sons Ltd., 2016) Fyffe, Graham; Graham, Paul; Tunwattanapong, Borom; Ghosh, Abhijeet; Debevec, Paul; Joaquim Jorge and Ming LinWe present a near-instant method for acquiring facial geometry and reflectance using a set of commodity DSLR cameras and flashes. Our setup consists of twenty-four cameras and six flashes which are fired in rapid succession with subsets of the cameras. Each camera records only a single photograph and the total capture time is less than the 67ms blink reflex. The cameras and flashes are specially arranged to produce an even distribution of specular highlights on the face. We employ this set of acquired images to estimate diffuse color, specular intensity, specular exponent, and surface orientation at each point on the face. We further refine the facial base geometry obtained from multi-view stereo using estimated diffuse and specular photometric information. This allows final submillimeter surface mesostructure detail to be obtained via shape-from-specularity. The final system uses commodity components and produces models suitable for authoring high-quality digital human characters.Item Interactive Monte-Carlo Ray-Tracing Upsampling(The Eurographics Association, 2016) Boughida, Malik; Groueix, Thibault; Boubekeur, Tamy; Luis Gonzaga Magalhaes and Rafal MantiukWe propose a practical method to approximate global illumination at interactive framerates for dynamic scenes. We address multi-bounce, visibility-aware indirect lighting, for diffuse to moderately glossy materials, relying on GPU-accelerated raytracing for this purpose. While Monte-Carlo ray-tracing algorithms offer unbiased results, they produce images which are, under interactive constraints, extremely noisy, even with GPU acceleration. Unfortunately, filtering them to reach visual appeal induces a large kernel, which is not compatible with interactive framerate. We address this problem using a simple downsampling approach. First, we trace indirect paths on a uniformly distributed subset of pixels, decorrelating diffuse and specular components of lighting. Then, we perform a joint bilateral upsampling on both components, taking inspiration from deferred shading by driving this upsampling with a full-resolution G-Buffer. Our solution provides smooth results, does not require any pre-computations, and is both easy to implement and flexible, as it can be used with any generation strategy for indirect rays.Item 3D Modelling Framework: an Incremental Approach(The Eurographics Association, 2016) Almeida, Luis; Menezes, Paulo; Dias, Jorge; Luis Gonzaga Magalhaes and Rafal MantiukThis paper presents a framework for on-line incremental 3D modeling useful for human computer interaction or telepresence applications. We aim a free viewpoint approach based on user's realistic representation to simulate a real face-to-face meeting. Our contribution includes a new adaptation of the Crust algorithm for incremental reconstruction purposes and, a confidence method that evaluates the fusion of new data into the reconstructed model, based on measure uncertainty and novelty.With depth and image information of a single RGB-D sensor, we incrementally reconstruct a mesh model by combining visual features and shape-based alignment.