Search Results

Now showing 1 - 5 of 5
  • Item
    12DoF Interaction for Scientific Visualisation
    (The Eurographics Association, 2017) Turner, Martin J.; Morris, Tim; Sandoval, Mario; Tao Ruan Wan and Franck Vidal
    This short extended abstract investigates human-computer interactions in relation to a specific Six Degree of Freedom (6DoF) input device; described is the driver development and calibration required for a novel piece of hardware; and after initial user tests and a questionnaire of satisfaction, we consider areas for further research. This abstract concludes with a discussion of the design and use of dual-6DoF input devices and from feedback how new interaction modes will be exploited.
  • Item
    Measuring Realism in Hair Rendering
    (The Eurographics Association, 2013) Ramesh, Girish; Turner, Martin J.; Silvester Czanner and Wen Tang
    Visualisation of hair is an extremely complex problem within the field of Computer Graphics. Over the last 10 years, huge strides have been made in the area of physically-based hair rendering, giving rise to many applications in various fields other than the graphics industry. Given the number of models for hair rendering, there is no well defined evaluation process to measure the realism in the hair models in use today. For this work-in-progress paper, we propose an evaluation process not only to evaluate the realism in hair rendering models, but also examine the various effects that contribute to its realistic perception. This builds an index of realism based on experiments with computer generated models, and then proposes comparing the results with values obtained from computational tomography, optical imaging and goniophotometer readings.
  • Item
    Visualizing a Spherical Geological Discrete Element Model of Fault Evolution
    (The Eurographics Association, 2012) Longshaw, Stephen M.; Turner, Martin J.; Finch, Emma; Hamish Carr and Silvester Czanner
    Discrete Element Modelling (DEM) is a numerical technique that uses a system of interacting discrete bodies to simulate the movement of material being exposed to external forces. This technique is often used to simulate granular systems; however by adding further elements that inter-connect the bodies, it can be used to simulate the deformation of a large volume of material. This method has precedent for use in the Earth Sciences and recently, with the increase of available computing power, it has been put to good use simulating the evolution of extensional faults in large scale crustal experiments that involve over half a million individual spherical bodies. An interactive environment that provides high quality rendering is presented, showing that interactivity is key in allowing the intelligent application of visualization methods such as colour-mapping and visibility thresholds in order to extract fault information from a geological DEM. It is also shown that glyph representation alone is not sufficient to provide full insight into the complex three dimensional geometries of the faults found within the model. To overcome this, a novel use of the MetaBall method is described, which results in implicit surface representations of sphere sub-sets. The surfaces produced are shown to provide greater insight into the faults found within the data but also raise questions as to their meaning.
  • Item
    Human-in-the-Loop Visualisation Architecture for Monitoring Remote Compute
    (The Eurographics Association, 2017) Turner, Martin J.; Nagella, Srikanth; Fowler, Ron; Allan, Robert J.; Pasca, Edoarado; Yang, Erica; Tao Ruan Wan and Franck Vidal
    This paper describes the timeline of use cases of large and remote display VEs (Virtual Environments), hosted by STFC (Science and Technology Facilities Council), which were linked to HPC (High Performance Computing) systems. Considered is the development and use in the last few years of putting the human back into the HPC loop and clarifying the main types of interaction and collaboration that have been re-explored. It describes a set of specific common modes of use as well as stages of development, categorising and explaining how best practice may be achieved.
  • Item
    Collaborative Computational Projects - Visualisation Applications Survey
    (The Eurographics Association, 2016) Turner, Martin J.; Fowler, Ron; Morris, Tim; Cagatay Turkay and Tao Ruan Wan
    This extended abstract presents initial outcomes from three visualisation user needs surveys, and includes an invitation for new communities to engage with follow-on surveys. Statistical and text cluster analysis have been used to assist specific computational groups; in order to select certain visualisation application packages for software development and to select which new algorithms to implement. This analysis is now also available for advising and creating recommendations to build a long term visualisation support service. The focus of these surveys and this work has been on looking at the use of software toolkits and application packages rather then surveying specific visualisation algorithm techniques.