2 results
Search Results
Now showing 1 - 2 of 2
Item Contouring with Uncertainty(The Eurographics Association, 2008) Osorio, R. S. Allendes; Brodlie, K. W.; Ik Soo Lim and Wen TangThe visualization of uncertainty remains one of the major challenges for the visualization community. To achieve this, we need to understand and develop methods that allow us not only to consider uncertainty as an extra variable within the visualization process, but to treat it as an integral part. In this paper, we take contouring, one of the most widely used visualization techniques for two dimensional data, and focus on extending the concept of contouring to uncertainty. We develop special techniques for the visualization of uncertain contours. We illustrate the work through application to a case study in oceanography.Item Adaptive Infrastructure for Visual Computing(The Eurographics Association, 2007) Brodlie, K. W.; Brooke, J.; Chen, M.; Chisnall, D.; Hughes, C. J.; John, Nigel W.; Jones, M. W.; Riding, M.; Roard, N.; Turner, M.; Wood, J. D.; Ik Soo Lim and David DuceRecent hardware and software advances have demonstrated that it is now practicable to run large visual computing tasks over heterogeneous hardware with output on multiple types of display devices. As the complexity of the enabling infrastructure increases, then so too do the demands upon the programmer for task integration as well as the demands upon the users of the system. This places importance on system developers to create systems that reduce these demands. Such a goal is an important factor of autonomic computing, aspects of which we have used to influence our work. In this paper we develop a model of adaptive infrastructure for visual systems. We design and implement a simulation engine for visual tasks in order to allow a system to inspect and adapt itself to optimise usage of the underlying infrastructure. We present a formal abstract representation of the visualization pipeline, from which a user interface can be generated automatically, along with concrete pipelines for the visualization. By using this abstract representation it is possible for the system to adapt at run time. We demonstrate the need for, and the technical feasibility of, the system using several example applications.