2 results
Search Results
Now showing 1 - 2 of 2
Item Real-time Content Adaptive Depth Retargeting for Light Field Displays(The Eurographics Association, 2015) Adhikarla, Vamsi Kiran; Marton, Fabio; Barsi, Attila; Kovács, Péter Tamás; Balogh, Tibor; Gobbetti, Enrico; B. Solenthaler and E. PuppoLight field display systems present visual scenes using a set of directional light beams emitted from multiple light sources as if they are emitted from points in a physical scene. These displays offer better angular resolution and therefore provide more depth of field than other automultiscopic displays. However in some cases the size of a scene may still exceed the available depth range of a light field display. Thus, rendering on these displays requires suitable adaptation of 3D content for providing comfortable viewing experience. We propose a content adaptive depth retargeting method to automatically modify the scene depth to suit to the needs of a light field display. By analyzing the scene and using display specific parameters, we formulate and solve an optimization problem to non-linearly adapt the scene depth to display depth. Our method synthesizes the depth retargeted light field content in real-time for supporting interactive visualization and also preserves the 3D appearance of the displayed objects as much as possible.Item A Computational Model of Light-Sheet Fluorescence Microscopy using Physically-based Rendering(The Eurographics Association, 2015) Abdellah, Marwan; Bilgili, Ahmet; Eilemann, Stefan; Markram, Henry; Schürmann, Felix; B. Solenthaler and E. PuppoWe present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. An extension for previous fluorescence models is developed to account for the intrinsic characteristics of fluorescent dyes in order to accurately simulate light interaction with fluorescent-tagged biological specimen. This extension was quantitatively validated against the fluorescence brightness equation and experimental spectra of different dyes. We demonstrate first results of our rendering pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat.