3 results
Search Results
Now showing 1 - 3 of 3
Item Smooth Blended Subdivision Shading(The Eurographics Association, 2018) Bakker, Jelle; Barendrecht, Pieter J.; Kosinka, Jiri; Diamanti, Olga and Vaxman, AmirThe concept known as subdivision shading aims at improving the shading of subdivision surfaces. It is based on the subdivision of normal vectors associated with the control net of the surface. By either using the resulting subdivided normal field directly, or blending it with the normal field of the limit surface, renderings of higher visual smoothness can be obtained. In this work we propose a different and more versatile approach to blend the two normal fields, yielding not only better results, but also a proof that our blended normal field is C1.Item A Comparison of GPU Tessellation Strategies for Multisided Patches(The Eurographics Association, 2018) Hettinga, Gerben Jan; Barendrecht, Pieter J.; Kosinka, Jiri; Diamanti, Olga and Vaxman, AmirWe propose an augmentation of the traditional tessellation pipeline with several different strategies that efficiently render multisided patches using generalised barycentric coordinates. The strategies involve different subdivision steps and the usage of textures. In addition, we show that adaptive tessellation techniques naturally extend to some of these strategies whereas others need a slight adjustment. The technique of Loop et al. [LSNC09], commonly known as ACC-2, is extended to multisided faces to illustrate the effectiveness of multisided techniques. A performance and quality comparison is made between the different strategies and remarks on the techniques and implementation details are provided.Item Accelerating Sphere Tracing(The Eurographics Association, 2018) Bálint, Csaba; Valasek, Gábor; Diamanti, Olga and Vaxman, AmirThis paper presents two performance improvements on sphere tracing. First, a sphere tracing variant designed to take optimal step sizes near planar surfaces is proposed. We demonstrate how relaxation is used to make this method applicable to sphere tracing arbitrary geometries and compare its performance to classical (by Hart) and relaxed (Keinert et al.) sphere tracing in rendering various scenes. The method is also general in the sense that it can be applied in any scenario that requires the computation of ray-surface intersections. Our second contribution is a multi-resolution rendering strategy that can be used with any sphere tracing variant. By starting from a lower resolution and gradually increasing it, render times can be reduced.