Search Results

Now showing 1 - 10 of 13
  • Item
    Optimizing Stereo-to-Multiview Conversion for Autostereoscopic Displays
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Chapiro, Alexandre; Heinzle, Simon; Aydin, Tunç Ozan; Poulakos, Steven; Zwicker, Matthias; Smolic, Aljosa; Gross, Markus; B. Levy and J. Kautz
    We present a novel stereo-to-multiview video conversion method for glasses-free multiview displays. Different from previous stereo-to-multiview approaches, our mapping algorithm utilizes the limited depth range of autostereoscopic displays optimally and strives to preserve the scene s artistic composition and perceived depth even under strong depth compression. We first present an investigation of how perceived image quality relates to spatial frequency and disparity. The outcome of this study is utilized in a two-step mapping algorithm, where we (i) compress the scene depth using a non-linear global function to the depth range of an autostereoscopic display, and (ii) enhance the depth gradients of salient objects to restore the perceived depth and salient scene structure. Finally, an adapted image domain warping algorithm is proposed to generate the multiview output, which enables overall disparity range extension.
  • Item
    Spatio-Temporal Geometry Fusion for Multiple Hybrid Cameras using Moving Least Squares Surfaces
    (The Eurographics Association and John Wiley and Sons Ltd., 2014) Kuster, Claudia; Bazin, Jean-Charles; Öztireli, Cengiz; Deng, Teng; Martin, Tobias; Popa, Tiberiu; Gross, Markus; B. Levy and J. Kautz
    Multi-view reconstruction aims at computing the geometry of a scene observed by a set of cameras. Accurate 3D reconstruction of dynamic scenes is a key component for a large variety of applications, ranging from special effects to telepresence and medical imaging. In this paper we propose a method based on Moving Least Squares surfaces which robustly and efficiently reconstructs dynamic scenes captured by a calibrated set of hybrid color+depth cameras. Our reconstruction provides spatio-temporal consistency and seamlessly fuses color and geometric information. We illustrate our approach on a variety of real sequences and demonstrate that it favorably compares to state-of-the-art methods.
  • Item
    Manufacturing Layered Attenuators for Multiple Prescribed Shadow Images
    (The Eurographics Association and John Wiley and Sons Ltd., 2012) Baran, Ilya; Keller, Philipp; Bradley, Derek; Coros, Stelian; Jarosz, Wojciech; Nowrouzezahrai, Derek; Gross, Markus; P. Cignoni and T. Ertl
    We present a practical and inexpensive method for creating physical objects that cast different color shadow images when illuminated by prescribed lighting configurations. The input to our system is a number of lighting configurations and corresponding desired shadow images. Our approach computes attenuation masks, which are then printed on transparent materials and stacked to form a single multi-layer attenuator. When illuminated with the input lighting configurations, this multi-layer attenuator casts the prescribed color shadow images. Alternatively, our method can compute layers so that their permutations produce different prescribed shadow images under fixed lighting. Each multi-layer attenuator is quick and inexpensive to produce, can generate multiple full-color shadows, and can be designed to respond to different types of natural or synthetic lighting setups. We illustrate the effectiveness of our multi-layer attenuators in simulation and in reality, with the sun as a light source.
  • Item
    Computational Design of Rubber Balloons
    (The Eurographics Association and John Wiley and Sons Ltd., 2012) Skouras, Mélina; Thomaszewski, Bernhard; Bickel, Bernd; Gross, Markus; P. Cignoni and T. Ertl
    This paper presents an automatic process for fabrication-oriented design of custom-shaped rubber balloons. We cast computational balloon design as an inverse problem: given a target shape, we compute an optimal balloon that, when inflated, approximates the target as closely as possible. To solve this problem numerically, we propose a novel physics-driven shape optimization method, which combines physical simulation of inflatable elastic membranes with a dedicated constrained optimization algorithm. We validate our approach by fabricating balloons designed with our method and comparing their inflated shapes to the results predicted by simulation. An extensive set of manufactured sample balloons demonstrates the shape diversity that can be achieved by our method.
  • Item
    Scalable Music: Automatic Music Retargeting and Synthesis
    (The Eurographics Association and Blackwell Publishing Ltd., 2013) Wenner, Simon; Bazin, Jean-Charles; Sorkine-Hornung, Alexander; Kim, Changil; Gross, Markus; I. Navazo, P. Poulin
    In this paper we propose a method for dynamic rescaling of music, inspired by recent works on image retargeting, video reshuffling and character animation in the computer graphics community. Given the desired target length of a piece of music and optional additional constraints such as position and importance of certain parts, we build on concepts from seam carving, video textures and motion graphs and extend them to allow for a global optimization of jumps in an audio signal. Based on an automatic feature extraction and spectral clustering for segmentation, we employ length-constrained least-costly path search via dynamic programming to synthesize a novel piece of music that best fulfills all desired constraints, with imperceptible transitions between reshuffled parts. We show various applications of music retargeting such as part removal, decreasing or increasing music duration, and in particular consistent joint video and audio editing.
  • Item
    Iterative Image Warping
    (The Eurographics Association and John Wiley and Sons Ltd., 2012) Bowles, Huw; Mitchell, Kenny; Sumner, Robert W.; Moore, Jeremy; Gross, Markus; P. Cignoni and T. Ertl
    Animated image sequences often exhibit a large amount of inter-frame coherence which standard rendering algorithms and pipelines are ill-equipped to exploit, limiting their efficiency. To address this inefficiency we transfer rendering results across frames using a novel image warping algorithm based on fixed point iteration. We analyze the behavior of the iteration and describe two alternative algorithms designed to suit different performance requirements. Further, to demonstrate the versatility of our approach we apply it to a number of spatio-temporal rendering problems including 30-to-60Hz frame upsampling, stereoscopic 3D conversion, defocus and motion blur. Finally we compare our approach against existing image warping methods and demonstrate a significant performance improvement.
  • Item
    Finite Element Image Warping
    (The Eurographics Association and Blackwell Publishing Ltd., 2013) Kaufmann, Peter; Wang, Oliver; Sorkine-Hornung, Alexander; Sorkine-Hornung, Olga; Smolic, Aljoscha; Gross, Markus; I. Navazo, P. Poulin
    We introduce a single unifying framework for a wide range of content-aware image warping tasks using a finite element method (FEM). Existing approaches commonly define error terms over vertex finite differences and can be expressed as a special case of our general FEM model. In this work, we exploit the full generality of FEMs, gaining important advantages over prior methods. These advantages include arbitrary mesh connectivity allowing for adaptive meshing and efficient large-scale solutions, a well-defined continuous problem formulation that enables clear analysis of existing warping error functions and allows us to propose improved ones, and higher order basis functions that allow for smoother warps with fewer degrees of freedom. To support per-element basis functions of varying degree and complex mesh connectivity with hanging nodes, we also introduce a novel use of discontinuous Galerkin FEM. We demonstrate the utility of our method by showing examples in video retargeting and camera stabilization applications, and compare our results with previous state of the art methods.
  • Item
    Robust Image Denoising using Kernel Predicting Networks
    (The Eurographics Association, 2021) Cai, Zhilin; Zhang, Yang; Manzi, Marco; Oztireli, Cengiz; Gross, Markus; Aydin, Tunç Ozan; Theisel, Holger and Wimmer, Michael
    We present a new method for designing high quality denoisers that are robust to varying noise characteristics of input images. Instead of taking a conventional blind denoising approach or relying on explicit noise parameter estimation networks as well as invertible camera imaging pipeline models, we propose a two-stage model that first processes an input image with a small set of specialized denoisers, and then passes the resulting intermediate denoised images to a kernel predicting network that estimates per-pixel denoising kernels. We demonstrate that our approach achieves robustness to noise parameters at a level that exceeds comparable blind denoisers, while also coming close to state-of-the-art denoising quality for camera sensor noise.
  • Item
    DuctTake: Spatiotemporal Video Compositing
    (The Eurographics Association and Blackwell Publishing Ltd., 2013) Rüegg, Jan; Wang, Oliver; Smolic, Aljoscha; Gross, Markus; I. Navazo, P. Poulin
    DuctTake is a system designed to enable practical compositing of multiple takes of a scene into a single video. Current industry solutions are based around object segmentation, a hard problem that requires extensive manual input and cleanup, making compositing an expensive part of the film-making process. Our method instead composites shots together by finding optimal spatiotemporal seams using motion-compensated 3D graph cuts through the video volume. We describe in detail the required components, decisions, and new techniques that together make a usable, interactive tool for compositing HD video, paying special attention to running time and performance of each section. We validate our approach by presenting a wide variety of examples and by comparing result quality and creation time to composites made by professional artists using current state-of-the-art tools.
  • Item
    Novel-View Synthesis of Outdoor Sport Events Using an Adaptive View-Dependent Geometry
    (The Eurographics Association and John Wiley and Sons Ltd., 2012) Germann, Marcel; Popa, Tiberiu; Keiser, Richard; Ziegler, Remo; Gross, Markus; P. Cignoni and T. Ertl
    We propose a novel fully automatic method for novel-viewpoint synthesis. Our method robustly handles multicamera setups featuring wide-baselines in an uncontrolled environment. In a first step, robust and sparse point correspondences are found based on an extension of the Daisy features [TLF10]. These correspondences together with back-projection errors are used to drive a novel adaptive coarse to fine reconstruction method, allowing to approximate detailed geometry while avoiding an extreme triangle count. To render the scene from arbitrary viewpoints we use a view-dependent blending of color information in combination with a view-dependent geometry morph. The view-dependent geometry compensates for misalignments caused by calibration errors. We demonstrate that our method works well under arbitrary lighting conditions with as little as two cameras featuring wide-baselines. The footage taken from real sports broadcast events contains fine geometric structures, which result in nice novel-viewpoint renderings despite of the low resolution in the images.