Search Results

Now showing 1 - 7 of 7
  • Item
    Are Points the Better Graphics Primitives?
    (Eurographics Association, 2001) Gross, Markus
    Since the early days of graphics the computer based representation of three-dimensional geometry has been one of the core research fields. Today, various sophisticated geometric modelling techniques including NURBS or implicit surfaces allow the creation of 3D graphics models with increasingly complex shape. In spite of these methods the triangle has survived over decades as the king of graphics primitives meeting the right balance between descriptive power and computational burden. As a consequence, today's consumer graphics hardware is heavily tailored for high performance triangle processing. In addition, a new generation of geometry processing methods including hierarchical representations, geometric filtering, or feature detection fosters the concept of triangle meshes for graphics modelling. Unlike triangles, points have amazingly been neglected as a graphics primitive. Although being included in APIs since many years, it is only recently that point samples experience a renaissance in computer graphics. Conceptually, points provide a mere discretization of geometry without explicit storage of topology. Thus, point samples reduce the representation to the essentials needed for rendering and enable us to generate highly optimized object representations. Although the loss of topology poses great challenges for graphics processing, the latest generation of algorithms features high performance rendering, point/pixel shading, anisotropic texture mapping, and advanced signal processing of point sampled geometry. This talk will give an overview of how recent research results in the processing of triangles and points are changing our traditional way of thinking of surface representations in computer graphics - and will discuss the question: Are Points the Better Graphics Primitives?
  • Item
    Point-Based Computer Graphics
    (Eurographics Association, 2003) Alexa, Marc; Dachsbacher, Carsten; Gross, Markus; Pauly, Mark; van Baar, Jeroen; Zwicker, Matthias
    -
  • Item
    Dynamic Sampling and Rendering of Algebraic Point Set Surfaces
    (The Eurographics Association and Blackwell Publishing Ltd, 2008) Guennebaud, Gael; Germann, Marcel; Gross, Markus
    Algebraic Point Set Surfaces (APSS) define a smooth surface from a set of points using local moving least-squares (MLS) fitting of algebraic spheres. In this paper we first revisit the spherical fitting problem and provide a new, more generic solution that includes intuitive parameters for curvature control of the fitted spheres. As a second contribution we present a novel real-time rendering system of such surfaces using a dynamic up-sampling strategy combined with a conventional splatting algorithm for high quality rendering. Our approach also includes a new view dependent geometric error tailored to efficient and adaptive up-sampling of the surface. One of the key features of our system is its high degree of flexibility that enables us to achieve high performance even for highly dynamic data or complex models by exploiting temporal coherence at the primitive level. We also address the issue of efficient spatial search data structures with respect to construction, access and GPU friendliness. Finally, we present an efficient parallel GPU implementation of the algorithms and search structures.
  • Item
    Lighting and Occlusion in a Wave-Based Framework
    (The Eurographics Association and Blackwell Publishing Ltd, 2008) Ziegler, Remo; Croci, Simone; Gross, Markus
    We present novel methods to enhance Computer Generated Holography (CGH) by introducing a complex-valued wave-based occlusion handling method. This offers a very intuitive and efficient interface to introduce optical elements featuring physically-based light interaction exhibiting depth-of-field, diffraction, and glare effects. Fur-thermore, an efficient and flexible evaluation of lit objects on a full-parallax hologram leads to more convincing images. Previous illumination methods for CGH are not able to change the illumination settings of rendered holo-grams. In this paper we propose a novel method for real-time lighting of rendered holograms in order to change the appearance of a previously captured holographic scene. These functionalities are features of a bigger wave-based rendering framework which can be combined with 2D framebuffer graphics. We present an algorithm which uses graphics hardware to accelerate the rendering.
  • Item
    Interactive Geometric Simulation of 4D Cities
    (The Eurographics Association and Blackwell Publishing Ltd, 2009) Weber, Basil; Mueller, Pascal; Wonka, Peter; Gross, Markus
    We present a simulation system that can simulate a three-dimensional urban model over time. The main novelty of our approach is that we do not rely on land-use simulation on a regular grid, but instead build a complete and inherently geometric simulation that includes exact parcel boundaries, streets of arbitrary orientation, street widths, 3D street geometry, building footprints, and 3D building envelopes. The second novelty is the fast simulation time and user interaction at interactive speed of about 1 second per time step.
  • Item
    Point Based Computer Graphics
    (Eurographics Association, 2002) Gross, Markus; Pfister, Hanspeter; Zwicker, Matthias; Pauly, Mark; Stamminger, Marc; Alexa, Marc
    -
  • Item
    Implicit Contact Handling for Deformable Objects
    (The Eurographics Association and Blackwell Publishing Ltd, 2009) Otaduy, Miguel A.; Tamstorf, Rasmus; Steinemann, Denis; Gross, Markus
    We present an algorithm for robust and efficient contact handling of deformable objects. By being aware of the internal dynamics of the colliding objects, our algorithm provides smooth rolling and sliding, stable stacking, robust impact handling, and seamless coupling of heterogeneous objects, all in a unified manner. We achieve dynamicsawareness through a constrained dynamics formulation with implicit complementarity constraints, and we present two major contributions that enable an efficient solution of the constrained dynamics problem: a time stepping algorithm that robustly ensures non-penetration and progressively refines the formulation of constrained dynamics, and a new solver for large mixed linear complementarity problems, based on iterative constraint anticipation. We show the application of our algorithm in challenging scenarios such as multi-layered cloth moving at high velocities, or colliding deformable solids simulated with large time steps.