Search Results

Now showing 1 - 5 of 5
  • Item
    Quadruped Animation
    (The Eurographics Association, 2008) Skrba, Ljiljana; Reveret, Lionel; Hetroy, Franck; Cani, Marie-Paule; O'Sullivan, Carol; Theoharis Theoharis and Philip Dutre
    Films like Shrek, Madagascar, The Chronicles of Narnia and Charlotte s web all have something in common: realistic quadruped animations. While the animation of animals has been popular for a long time, the technical challenges associated with creating highly realistic, computer generated creatures have been receiving increasing attention recently. The entertainment, education and medical industries have increased the demand for simulation of realistic animals in the computer graphics area. In order to achieve this, several challenges need to be overcome: gathering and processing data that embodies the natural motion of an animal which is made more difficult by the fact that most animals cannot be easily motion-captured; build accurate kinematic models for animals, in particular with adapted animation skeletons; and develop either kinematic or physically-based animation methods, either embedding some a priori knowledge about the way that quadrupeds locomote and/or building on some example of real motion. In this state of the art report, we present an overview of the common techniques used to date for realistic quadruped animation. This includes an outline of the various ways that realistic quadruped motion can be achieved, through video-based acquisition, physics based models, inverse kinematics, or some combination of the above. The research presented represents a cross fertilisation of vision, graphics and interaction methods.
  • Item
    Collision Handling and its Applications
    (The Eurographics Association, 2006) Teschner, Matthias; Cani, Marie-Paule; Fedkiw, Ron; Bridson, Robert; Redon, Stephane; Volino, Pascal; Zachmann, Gabriel; Nadia Magnenat-Thalmann and Katja Bühler
    In contrast to real-world scenarios, object representations in virtual environments have no notion of interpenetration. Therefore, algorithms for the detection of interfering object representations are an essential component in virtual environments. Applications are wide-spread and can be found in areas such as surgery simulation, games, cloth simulation, and virtual prototyping. Early collision detection approaches have been presented in robotics and computational geometry more than twenty years ago. Nevertheless, collision detection is still a very active research topic in computer graphics. This ongoing interest is constantly documented by new results presented in journals and at major conferences, such as Siggraph and Eurographics. In order to enable a realistic behavior of interacting objects in dynamic simulations, collision detection algorithms have to be accompanied by collision response schemes.
  • Item
    Interactive Shape Modeling
    (The Eurographics Association, 2005) Alexa, Marc; Angelidis, Alexis; Cani, Marie-Paule; Singh, Karan; Zorin, Denis; Ming Lin and Celine Loscos
    The course will present the state-of-the-art in digital modeling techniques, both in commercial software and academic research. The goal of this course is to impart the audience with an understanding of the big open questions as well as the skills to engineer recent research in interactive shape modeling applications.
  • Item
    Predicting Natural Hair Shapes by Solving the Statics of Flexible Rods
    (The Eurographics Association, 2005) Bertails, Florence; Audoly, Basile; Querleux, Bernard; Leroy, Frédéric; Lévêque, Jean-Luc; Cani, Marie-Paule; John Dingliana and Fabio Ganovelli
    This paper presents a new physically-based method for predicting natural hairstyles in the presence of gravity and collisions. The method is based upon a mechanically accurate model for static elastic rods (Kirchhoff model), which accounts for the natural curliness of hair, as well as for hair ellipticity. The equilibrium shape is computed in a stable and easy way by energy minimization. This yields various typical hair configurations that can be observed in the real world, such as ringlets. As our results show, the method can generate different hair types with a very few input parameters, and perform virtual hairdressing operations such as wetting, cutting and drying hair.
  • Item
    Virtual Clay for Direct Hand Manipulation
    (Eurographics Association, 2004) Dewaele, Guillaume; Cani, Marie-Paule; M. Alexa and E. Galin
    In order to make virtual modeling as easy as real clay manipulation, we describe a realtime virtual clay model, specially designed for direct hand manipulation. We build on a previous layered model for clay, extending it to handle local properties such as colour or fluidity, to deal with an arbitrary number of tools, and to capture twist effects due to rotating tools. The resulting clay model is the first step towards a more long term goal, namely direct interaction through video tracking of the user’s hands.