14 results
Search Results
Now showing 1 - 10 of 14
Item Interactive Motion Mapping for Real-time Character Control(The Eurographics Association and John Wiley and Sons Ltd., 2014) Rhodin, Helge; Tompkin, James; Kim, Kwang In; Varanasi, Kiran; Seidel, Hans-Peter; Theobalt, Christian; B. Levy and J. KautzAbstract It is now possible to capture the 3D motion of the human body on consumer hardware and to puppet in real time skeleton-based virtual characters. However, many characters do not have humanoid skeletons. Characters such as spiders and caterpillars do not have boned skeletons at all, and these characters have very different shapes and motions. In general, character control under arbitrary shape and motion transformations is unsolved - how might these motions be mapped? We control characters with a method which avoids the rigging-skinning pipeline - source and target characters do not have skeletons or rigs. We use interactively-defined sparse pose correspondences to learn a mapping between arbitrary 3D point source sequences and mesh target sequences. Then, we puppet the target character in real time. We demonstrate the versatility of our method through results on diverse virtual characters with different input motion controllers. Our method provides a fast, flexible, and intuitive interface for arbitrary motion mapping which provides new ways to control characters for real-time animation.Item Manipulating Refractive and Reflective Binocular Disparity(The Eurographics Association and John Wiley and Sons Ltd., 2014) Dabala, Lukasz; Kellnhofer, Petr; Ritschel, Tobias; Didyk, Piotr; Templin, Krzysztof; Myszkowski, Karol; Rokita, P.; Seidel, Hans-Peter; B. Levy and J. KautzPresenting stereoscopic content on 3D displays is a challenging task, usually requiring manual adjustments. A number of techniques have been developed to aid this process, but they account for binocular disparity of surfaces that are diffuse and opaque only. However, combinations of transparent as well as specular materials are common in the real and virtual worlds, and pose a significant problem. For example, excessive disparities can be created which cannot be fused by the observer. Also, multiple stereo interpretations become possible, e. g., for glass, that both reflects and refracts, which may confuse the observer and result in poor 3D experience. In this work, we propose an efficient method for analyzing and controlling disparities in computer-generated images of such scenes where surface positions and a layer decomposition are available. Instead of assuming a single per-pixel disparity value, we estimate all possibly perceived disparities at each image location. Based on this representation, we define an optimization to find the best per-pixel camera parameters, assuring that all disparities can be easily fused by a human. A preliminary perceptual study indicates, that our approach combines comfortable viewing with realistic depiction of typical specular scenes.Item NoRM: No-Reference Image Quality Metric for Realistic Image Synthesis(The Eurographics Association and John Wiley and Sons Ltd., 2012) Herzog, Robert; Cadík, Martin; Aydin, Tunç O.; Kim, Kwang In; Myszkowski, Karol; Seidel, Hans-Peter; P. Cignoni and T. ErtlSynthetically generating images and video frames of complex 3D scenes using some photo-realistic rendering software is often prone to artifacts and requires expert knowledge to tune the parameters. The manual work required for detecting and preventing artifacts can be automated through objective quality evaluation of synthetic images. Most practical objective quality assessment methods of natural images rely on a ground-truth reference, which is often not available in rendering applications. While general purpose no-reference image quality assessment is a difficult problem, we show in a subjective study that the performance of a dedicated no-reference metric as presented in this paper can match the state-of-the-art metrics that do require a reference. This level of predictive power is achieved exploiting information about the underlying synthetic scene (e.g., 3D surfaces, textures) instead of merely considering color, and training our learning framework with typical rendering artifacts. We show that our method successfully detects various non-trivial types of artifacts such as noise and clamping bias due to insufficient virtual point light sources, and shadow map discretization artifacts. We also briefly discuss an inpainting method for automatic correction of detected artifacts.Item Mutable Elastic Models for Sculpting Structured Shapes(The Eurographics Association and Blackwell Publishing Ltd., 2013) Milliez, Antoine; Wand, Michael; Cani, Marie-Paule; Seidel, Hans-Peter; I. Navazo, P. PoulinIn this paper, we propose a new paradigm for free-form shape deformation. Standard deformable models minimize an energy measuring the distance to a single target shape. We propose a new, ''mutable'' elastic model. It represents complex geometry by a collection of parts and measures the distance of each part measures to a larger set of alternative rest configurations. By detecting and reacting to local switches between best-matching rest states, we build a 3D sculpting system: It takes a structured shape consisting of parts and replacement rules as input. The shape can subsequently be elongated, compressed, bent, cut, and merged within a constraints-based free-form editing interface, where alternative rest-states model to such changes. In practical experiments, we show that the approach yields a surprisingly intuitive and easy to implement interface for interactively designing objects described by such discrete shape grammars, for which direct shape control mechanisms were typically lacking.Item Material Editing in Complex Scenes by Surface Light Field Manipulation and Reflectance Optimization(The Eurographics Association and Blackwell Publishing Ltd., 2013) Nguyen, Chuong H.; Scherzer, Daniel; Ritschel, Tobias; Seidel, Hans-Peter; I. Navazo, P. PoulinThis work addresses the challenge of intuitive appearance editing in scenes with complex geometric layout and complex, spatially-varying indirect lighting. In contrast to previous work, that aimed to edit surface reflectance, our system allows a user to freely manipulate the surface light field. It then finds the best surface reflectance that ''explains'' the surface light field manipulation. Instead of classic L2 fitting of reflectance to a combination of incoming and exitant illumination, our system infers a sparse L0 change of shading parameters instead. Consequently, our system does not require ''diffuse'' or ''glossiness'' brushes or any such understanding of the underlying reflectance parametrization. Instead, it infers reflectance changes from scribbles made by a single simple color brush tool alone: Drawing a highlight will increase Phong specular; blurring a mirror reflection will decrease glossiness; etc. A sparse-solver framework operating on a novel point-based, pre-convolved lighting representation in combination with screen-space edit upsampling allows to perform editing interactively on a GPU.Item Guiding Image Manipulations using Shape-appearance Subspaces from Co-alignment of Image Collections(The Eurographics Association and John Wiley & Sons Ltd., 2015) Nguyen, Chuong H.; Nalbach, Oliver; Ritschel, Tobias; Seidel, Hans-Peter; Olga Sorkine-Hornung and Michael WimmerWe propose a system to restrict the manipulation of shape and appearance in an image to a valid subspace which we learn from a collection of exemplar images. To this end, we automatically co-align a collection of images and learn a subspace model of shape and appearance using principal components. As finding perfect image correspondences for general images is not feasible, we build an approximate partial alignment and improve bad alignments leveraging other, more successful alignments. Our system allows the user to change appearance and shape in real-time and the result is ''projected'' onto the subspace of meaningful changes. The change in appearance and shape can either be locked or performed independently. Additional applications include suggestion of alternative shapes or appearance.Item Exploring Shape Variations by 3D-Model Decomposition and Part-based Recombination(The Eurographics Association and John Wiley and Sons Ltd., 2012) Jain, Arjun; Thormählen, Thorsten; Ritschel, Tobias; Seidel, Hans-Peter; P. Cignoni and T. ErtlWe present a system that allows new shapes to be created by blending between shapes taken from a database. We treat the shape as a composition of parts; blending is performed by recombining parts from different shapes according to constraints deduced by shape analysis. The analysis involves shape segmentation, contact analysis, and symmetry detection. The system can be used to rapidly instantiate new models that have similar symmetry and adjacency structure to the database shapes, yet vary in appearance.Item Automatically Rigging Multi-component Characters(The Eurographics Association and John Wiley and Sons Ltd., 2012) Bharaj, Gaurav; Thormählen, Thorsten; Seidel, Hans-Peter; Theobalt, Christian; P. Cignoni and T. ErtlRigging an arbitrary 3D character by creating an animation skeleton is a time-consuming process even for experienced animators. In this paper, we present an algorithm that automatically creates animation rigs for multicomponent 3D models, as they are typically found in online shape databases. Our algorithm takes as input a multi-component model and an input animation skeleton with associated motion data. It then creates a target skeleton for the input model, calculates the rigid skinning weights, and a mapping between the joints of the target skeleton and the input animation skeleton. The automatic approach does not need additional semantic information, such as component labels or user-provided correspondences, and succeeds on a wide range of models where the number of components is significantly different. It implicitly handles large scale and proportional differences between input and target skeletons and can deal with certain morphological differences, e.g., if input and target have different numbers of limbs. The output of our algorithm can be directly used in a retargeting system to create a plausible animated character.Item Optimal Spline Approximation via l0-Minimization(The Eurographics Association and John Wiley & Sons Ltd., 2015) Brandt, Christopher; Seidel, Hans-Peter; Hildebrandt, Klaus; Olga Sorkine-Hornung and Michael WimmerSplines are part of the standard toolbox for the approximation of functions and curves in Rd. Still, the problem of finding the spline that best approximates an input function or curve is ill-posed, since in general this yields a ''spline'' with an infinite number of segments. The problem can be regularized by adding a penalty term for the number of spline segments. We show how this idea can be formulated as an 0-regularized quadratic problem. This gives us a notion of optimal approximating splines that depend on one parameter, which weights the approximation error against the number of segments. We detail this concept for different types of splines including B-splines and composite Bézier curves. Based on the latest development in the field of sparse approximation, we devise a solver for the resulting minimization problems and show applications to spline approximation of planar and space curves and to spline conversion of motion capture data.Item A Correlated Parts Model for Object Detection in Large 3D Scans(The Eurographics Association and Blackwell Publishing Ltd., 2013) Sunkel, Martin; Jansen, Silke; Wand, Michael; Seidel, Hans-Peter; I. Navazo, P. PoulinThis paper addresses the problem of detecting objects in 3D scans according to object classes learned from sparse user annotation. We model objects belonging to a class by a set of fully correlated parts, encoding dependencies between local shapes of different parts as well as their relative spatial arrangement. For an efficient and comprehensive retrieval of instances belonging to a class of interest, we introduce a new approximate inference scheme and a corresponding planning procedure. We extend our technique to hierarchical composite structures, reducing training effort and modeling spatial relations between detected instances. We evaluate our method on a number of real-world 3D scans and demonstrate its benefits as well as the performance of the new inference algorithm.