Search Results

Now showing 1 - 10 of 46
  • Item
    Interlocking Pieces for Printing Tangible Cultural Heritage Replicas
    (The Eurographics Association, 2014) Alemanno, Giuseppe; Cignoni, Paolo; Pietroni, Nico; Ponchio, Federico; Scopigno, Roberto; Reinhard Klein and Pedro Santos
    We propose a technique to decompose a 3D digital shape into a set of interlocking pieces that are easy to be manufactured and assembled. The pieces are designed so that they can be represented as a simple height field and, therefore, they can be manufactured by common 3D printers without the usage of supporting material. The removal of the supporting material is often a burdensome task and may eventually damage the surface of the printed object. Our approach makes the final reproduction cheaper, accurate and suitable for the reproduction of tangible cultural heritages. Moreover, since the proposed technique decomposes the artwork in pieces, it also overcomes the working space limits of common printers. The decomposition of the input (high-resolution) triangular mesh is driven by a coarse polygonal base mesh (representing the target subdivision in pieces); the height fields defining each piece are generated by sampling distances along the normal of each face composing the base mesh. A innovative interlocking mechanism allows adjacent pieces to plug each other to compose the final shape. This interlocking mechanism is designed to preserve the height field property of the pieces and to provide a sufficient degree of grip to ensure the assembled structure shape to be compact and stable. We demonstrate the effectiveness of our approach and show its limitations with some practical reproduction examples.
  • Item
    Adaptive Clipping of Splats to Models with Sharp Features
    (The Eurographics Association, 2014) Ivo, Rafael; Ganovelli, Fabio; Vidal, Creto; Scopigno, Roberto; Andrea Giachetti
    Splat-based models are a good representation because of its absense of topology, making complex modeling operations easier, but keeping the same approximation ratio from triangular meshes. However corners cannot be properly represented by splats without clipping them. We present a new method for clipping splats in models with sharp features. Each splat is an ellipse equipped with a few parameters that allow to define how the ellipse can be clipped against a bidimensional rational Bézier curve and thus it can be used for all those surfaces that show a large number of edge features and different sampling rate around them. The simple and uniform data used to define the clipping curve makes easy the implementation in GPU. We designed and implemented an automatic computation of the clipping curves and a pipeline for sampling a generic surface with splats and render it. In this paper we show how this technique outperforms the previous clipping techniques in precision for objects such as mechanical parts and CAD- like models keeping the rendering speed.
  • Item
    Geometry-aware Video Registration
    (The Eurographics Association, 2010) Palma, Gianpalo; Callieri, Marco; Dellepiane, Matteo; Corsini, Massimiliano; Scopigno, Roberto; Reinhard Koch and Andreas Kolb and Christof Rezk-Salama
    We present a new method for the accurate registration of video sequences of a real object over its dense triangular mesh. The goal is to obtain an accurate video-to-geometry registration to allow the bidirectional data transfer between the 3D model and the video using the perspective projection defined by the camera model. Our solution uses two different approaches: feature-based registration by KLT video tracking, and statistic-based registration by maximizing the Mutual Information (MI) between the gradient of the frame and the gradient of the rendering of the 3D model with some illumination related properties, such as surface normals and ambient occlusion. While the first approach allows a fast registration of short sequences with simple camera movements, the MI is used to correct the drift problem that KLT tracker produces over long sequences, due to the incremental tracking and the camera motion. We demonstrate, using synthetic sequences, that the alignment error obtained with our method is smaller than the one introduced by KLT, and we show the results of some interesting and challenging real sequences of objects of different sizes, acquired under different conditions.
  • Item
    PileBars: Scalable Dynamic Thumbnail Bars
    (The Eurographics Association, 2012) Brivio, Paolo; Tarini, Marco; Ponchio, Federico; Cignoni, Paolo; Scopigno, Roberto; David Arnold and Jaime Kaminski and Franco Niccolucci and Andre Stork
    We introduce PileBars, a new class of animated thumbnail-bars supporting browsing of large image datasets (hundreds or thousands of images). Since the bar is meant to be just one element of a GUI, it covers only a small portion of the screen; yet it provides a global view of the entire dataset, without any scrolling panel. Instead, thumbnails are dynamically rearranged, resized and reclustered into adaptive layouts during the entire browsing process. The objective is to enable the user both to accurately pinpoint a specific image (even among semantically close ones), and to jump anywhere to ''distant'' parts of the dataset. The thumbnail layouts proposed maximize also the temporal coherence, thus allowing for smooth animations from one layout to the next. The system is very general: it can be driven by any application-specific image-to-image semantic distance function, and respects any user-defined total ordering of the images; the ordering can be either inferred from the semantic or be chosen independently from it, depending on the application. The applicability of the resulting system is tested in a number of practical applications and fits very well the issues in management of Cultural Heritage image collections.
  • Item
    Two Examples of GPGPU Acceleration of Memory-intensive Algorithms
    (The Eurographics Association, 2010) Marras, Stefano; Mura, Claudio; Gobbetti, Enrico; Scateni, Riccardo; Scopigno, Roberto; Enrico Puppo and Andrea Brogni and Leila De Floriani
    The advent of GPGPU technologies has allowed for sensible speed-ups in many high-dimension, memory-intensive computational problems. In this paper we demonstrate the e ectiveness of such techniques by describing two applications of GPGPU computing to two di erent subfields of computer graphics, namely computer vision and mesh processing. In the first case, CUDA technology is employed to accelerate the computation of approximation of motion between two images, known also as optical flow. As for mesh processing, we exploit the massivelyparallel architecture of CUDA devices to accelerate the face clustering procedure that is employed in many recent mesh segmentation algorithms. In both cases, the results obtained so far are presented and thoroughly discussed, along with the expected future development of the work.
  • Item
    Surface Light Field from Video Acquired in Uncontrolled Settings
    (The Eurographics Association, 2013) Palma, Gianpaolo; Desogus, Nicola; Cignoni, Paolo; Scopigno, Roberto; -
    This paper presents an algorithm for the estimation of the Surface Light Field using video sequences acquired moving the camera around the object. Unlike other state of the art methods, it does not require a uniform sampling density of the view directions, but it is able to build an approximation of the Surface Light Field starting from a biased video acquisition: dense along the camera path and completely missing in the other directions. The main idea is to separate the estimation of two components: the diffuse color, computed using statistical operations that allow the estimation of a rough approximation of the direction of the main light sources in the acquisition environment; the other residual Surface Light Field effects, modeled as linear combination of spherical functions. From qualitative and numerical evaluations, the final rendering results show a high fidelity and similarity with the input video frames, without ringing and banding effects.
  • Item
    Generalized Trackball for Surfing Over Surfaces
    (The Eurographics Association, 2016) Malomo, Luigi; Cignoni, Paolo; Scopigno, Roberto; Giovanni Pintore and Filippo Stanco
    We present an efficient 3D interaction technique: generalizing the well known trackball approach, this technique unifies and blends the two common interaction mechanisms known as panning and orbiting. The approach allows to inspect a virtual object by navigating over its surrounding space, remaining at a chosen distance and performing an automatic panning over its surface. This generalized trackball allows an intuitive navigation of topologically complex shapes, enabling unexperienced users to visit hard-to-reach parts better and faster than with standard GUI components. The approach is based on the construction of multiple smooth approximations of the model under inspection; at rendering time, it constrains the camera to stay at a given distance to these approximations. The approach requires negligible preprocessing and memory overhead and works well for both mousebased and touch interfaces. An informal user study confirms the impact of the proposed technique.
  • Item
    Detection of Geometric Temporal Changes in Point Clouds
    (Copyright © 2016 The Eurographics Association and John Wiley & Sons Ltd., 2016) Palma, Gianpaolo; Cignoni, Paolo; Boubekeur, Tamy; Scopigno, Roberto; Chen, Min and Zhang, Hao (Richard)
    Detecting geometric changes between two 3D captures of the same location performed at different moments is a critical operation for all systems requiring a precise segmentation between change and no‐change regions. Such application scenarios include 3D surface reconstruction, environment monitoring, natural events management and forensic science. Unfortunately, typical 3D scanning setups cannot provide any one‐to‐one mapping between measured samples in static regions: in particular, both extrinsic and intrinsic sensor parameters may vary over time while sensor noise and outliers additionally corrupt the data. In this paper, we adopt a multi‐scale approach to robustly tackle these issues. Starting from two point clouds, we first remove outliers using a probabilistic operator. Then, we detect the actual change using the implicit surface defined by the point clouds under a Growing Least Square reconstruction that, compared to the classical proximity measure, offers a more robust change/no‐change characterization near the temporal intersection of the scans and in the areas exhibiting different sampling density and direction. The resulting classification is enhanced with a spatial reasoning step to solve critical geometric configurations that are common in man‐made environments. We validate our approach on a synthetic test case and on a collection of real data sets acquired using commodity hardware. Finally, we show how 3D reconstruction benefits from the resulting precise change/no‐change segmentation.Detecting geometric changes between two 3D captures of the same location performed at different moments is a critical operation for all systems requiring a precise segmentation between change and no‐change regions. Unfortunately, typical 3D scanning setups cannot provide any oneto‐one mapping between measured samples in static regions: both extrinsic and intrinsic sensor parameters may vary over time while sensor noise and outliers additionally corrupt the data. In this paper, we adopt a multi‐scale approach to robustly tackle these issues, obtaining a robust segmentation near the temporal intersection of the scans and in the areas with different sampling density and direction.
  • Item
    A computer-assisted constraint-based system for assembling fragmented objects
    (The Eurographics Association, 2013) Palmas, Gregorio; Pietroni, Nico; Cignoni, Paolo; Scopigno, Roberto; -
    We propose a computer-assisted constraint-based methodology for virtual reassembly of Cultural Heritage (CH) artworks. Instead than focusing on automatic, unassisted reassembly, we targeted the scenarios where the reconstruction process is not be based on shape properties only but it is build over the experience and intuition of a CH expert. Our purpose is therefore to design a flexible interactive system, based on the selection of a set of constraints which relates different fragments, according to the understanding and experience of the CH operator. Once the user has defined those constraints, the system searches for a suitable solution, using a global energy minimization strategy that considers simultaneously all the pieces involved in the reconstruction process. Additionally, our framework provides the possibility to work in a hierarchical way, mimicking the traditional physical procedure that archaeologists use to reassemble tangible fractured objects. The frameworks is designed to work even with fragments that could have been severely damaged or eroded. On those datasets, automatic approaches may often fail, since the fractured regions do not contain enough geometric information to infer the correct matches. We present some successful uses of our framework on real application scenarios.
  • Item
    Automating Large 3D Dataset Publication in a Web-Based Multimedia Repository
    (The Eurographics Association, 2016) Potenziani, Marco; Fritsch, Bernhard; Dellepiane, Matteo; Scopigno, Roberto; Giovanni Pintore and Filippo Stanco
    Online publishing of almost every type of 3D data has become a quasi-standard routine. Nevertheless, the integration in a web page of a single 3D model, or of a predefined restricted set of models, raises different issues compared to an efficient and effective integration of thousands of them in an online repository. In this case it is mandatory to have an automatized pipeline to prepare and homogenize the dataset. The pipeline should be able to automatically wrap 3D data in all conditions, and display every single model with the best scene setup without any (or with a minimal) interaction by the database maintainers. This paper, retracing the steps of a recent real application case, aims at showing all the faced issues (and the adopted solutions) to publish a large and heterogeneous three-dimensional dataset in a web specialized repository. We want to introduce a valid and reusable strategy, starting from the description of the pipeline adopted for data pre-processing and moving to the choices made in the 3D viewer implementation. The paper concludes with a discussion on the actual state of the integration of 3D data with the other multimedia informative layers.