57 results
Search Results
Now showing 1 - 10 of 57
Item Environment-aware Real-Time Crowd Control(The Eurographics Association, 2012) Henry, Joseph; Shum, Hubert P. H.; Komura, Taku; Jehee Lee and Paul KryReal-time crowd control has become an important research topic due to the recent advancement in console game quality and hardware processing capability. The degrees of freedom of a crowd is much higher than that provided by a standard user input device. As a result most crowd control systems require the user to design the crowd move- ments through multiple passes, such as first specifying the crowd's start and goal points, then providing the agent trajectories with streamlines. Such a multi-pass control would spoil the responsiveness and excitement of real- time games. In this paper, we propose a new, single-pass algorithm to control crowds using a deformable mesh. When controlling crowds, we observe that most of the low level details are related to passive interactions between the crowd and the environment, such as obstacle avoidance and diverging/merging at cross points. Therefore, we simplify the crowd control problem by representing the crowd with a deformable mesh that passively reacts to the environment. As a result, the user can focus on high level control that is more important for context delivery. Our algorithm provides an efficient crowd control framework while maintaining the quality of the simulation, which is useful for real-time applications such as strategy games.Item High Resolution Medical 3D Data Sets on Mobile Devices and WebGL(The Eurographics Association, 2012) Jimenez, Juan-Roberto; Noguera, Jose Maria; Isabel Navazo and Gustavo PatowNowadays, mobile devices and the web are being used to deliver 3D graphics to mass users. However, applications such as visualization of high resolution medical models are still impossible to handle in such platforms due to texture limitations, mainly the lack of 3D texture support. In this paper we propose a software architecture and a novel texture storage technique that overcome these limitations. In addition, our proposal allows us to adapt existing direct volume rendering techniques based on 3D textures to mobile devices and WebGL. Our experiments demonstrate the feasibility and validity of our proposal to render high resolution volumetric models on both platforms.Item Quaternion Space Sparse Decomposition for Motion Compression and Retrieval(The Eurographics Association, 2012) Zhu, Mingyang; Sun, Huaijiang; Deng, Zhigang; Jehee Lee and Paul KryQuaternion has become one of the most widely used representations for rotational transformations in 3D graphics for decades. Due to the sparse nature of human motion in both the spatial domain and the temporal domain, an unexplored yet challenging research problem is how to directly represent intrinsically sparse human motion data in quaternion space. In this paper we propose a novel quaternion space sparse decomposition (QSSD) model that decomposes human rotational motion data into two meaningful parts (namely, the dictionary part and the weight part) with the sparseness constraint on the weight part. Specifically, a linear combination (addition) operation in Euclidean space is equivalently modeled as a quaternion multiplication operation, and the weight of linear combination is modeled as a power operation on quaternion. Besides validations of the robustness, convergence, and accuracy of the QSSD model, we also demonstrate its two selected applications: human motion data compression and content-based human motion retrieval. Through numerous experiments and quantitative comparisons, we demonstrate that the QSSD-based approaches can soundly outperform existing state-of-the-art human motion compression and retrieval approaches.Item Linear-Time Smoke Animation with Vortex Sheet Meshes(The Eurographics Association, 2012) Brochu, Tyson; Keeler, Todd; Bridson, Robert; Jehee Lee and Paul KryWe present the first quality physics-based smoke animation method which runs in time approximately linear in the size of the rendered two-dimensional visual detail. Our fundamental representation is a closed triangle mesh surface dividing space between clear air and a uniformly smoky region, on which we compute vortex sheet dynamics to accurately solve inviscid buoyant flow. We handle arbitrary moving no-stick solid boundaries and by default handle an infinite domain. The simulation itself runs in time linear to the number of triangles thanks to the use of a well-conditioned integral equation treatment together with a Fast Multipole Method for linear-time summations, providing excellent performance. Basic zero-albedo smoke rendering, with embedded solids, is easy to implement for interactive rates, and the mesh output can also serve as an extremely compact and detailed input to more sophisticated volume rendering.Item Smoke Sheets for Graph-Structured Vortex Filaments(The Eurographics Association, 2012) Barnat, Alfred; Pollard, Nancy S.; Jehee Lee and Paul KrySmoke is one of the core phenomena which fluid simulation techniques in computer graphics have attempted to capture. It is both well understood mathematically and important in lending realism to computer generated effects. In an attempt to overcome the diffusion inherent to Eulerian grid-based simulators, a technique has recently been developed which represents velocity using a sparse set of vortex filaments. This has the advantage of providing an easily understandable and controllable model for fluid velocity, but is computationally expensive because each filament affects the fluid velocity over an unbounded region of the simulation space. We present an alternative to existing techniques which merge adjacent filament rings, instead allowing filaments to form arbitrary structures, and we develop a new set of reconnection criteria to take advantage of this filament graph. To complement this technique, we also introduce a method for smoke surface tracking and rendering designed to minimize the number of sample points without introducing excessive diffusion or blurring. Though this representation lends itself to straightforward real-time rendering, we also present a method which renders the thin sheets and curls of smoke as diffuse volumes using any GPU capable of supporting geometry shaders.Item Tessellation-Independent Smooth Shadow Boundaries(The Eurographics Association and Blackwell Publishing Ltd., 2012) Mattausch, Oliver; Scherzer, Daniel; Wimmer, Michael; Igarashi, Takeo; Fredo Durand and Diego GutierrezWe propose an efficient and light-weight solution for rendering smooth shadow boundaries that do not reveal the tessellation of the shadow-casting geometry. Our algorithm reconstructs the smooth contours of the underlying mesh and then extrudes shadow volumes from the smooth silhouettes to render the shadows. For this purpose we propose an improved silhouette reconstruction using the vertex normals of the underlying smooth mesh. Then our method subdivides the silhouette loops until the contours are sufficiently smooth and project to smooth shadow boundaries. This approach decouples the shadow smoothness from the tessellation of the geometry and can be used to maintain equally high shadow quality for multiple LOD levels. It causes only a minimal change to the fill rate, which is the well-known bottleneck of shadow volumes, and hence has only small overhead.Item The Intersection Contour Minimization Method for Untangling Oriented Deformable Surfaces(The Eurographics Association, 2012) Ye, Juntao; Zhao, Jing; Jehee Lee and Paul KryThe Intersection Contour Minimization (ICM) method [VM06] has been proven to be an effective history-free algorithm for resolving collisions between non-oriented deformable surfaces. In many circumstances, however, surface orientation information are often implied in the context. Being completely blind to such information in the ICM method often leads to unexpected result: either failure or slow convergence in certain intersection config- urations. By introducing the concept of ''repulsive normal'' into ICM, many of those once-failure configurations can be resolved successfully. Even for those once-successful configurations, repulsive normals usually speed-up the convergence. Moreover, the ICM method that was originally designed for polygonal meshes can actually be adapted to resolve collisions between a polygon mesh and an analytical surface. This paper presents one such extension collisions between a polygon mesh and a capsule.Item Analytic Tangent Irradiance Environment Maps for Anisotropic Surfaces(The Eurographics Association and Blackwell Publishing Ltd., 2012) Mehta, Soham Uday; Ramamoorthi, Ravi; Meyer, Mark; Hery, Christophe; Fredo Durand and Diego GutierrezEnvironment-mapped rendering of Lambertian isotropic surfaces is common, and a popular technique is to use a quadratic spherical harmonic expansion. This compact irradiance map representation is widely adopted in interactive applications like video games. However, many materials are anisotropic, and shading is determined by the local tangent direction, rather than the surface normal. Even for visualization and illustration, it is increasingly common to define a tangent vector field, and use anisotropic shading. In this paper, we extend spherical harmonic irradiance maps to anisotropic surfaces, replacing Lambertian reflectance with the diffuse term of the popular Kajiya-Kay model. We show that there is a direct analogy, with the surface normal replaced by the tangent. Our main contribution is an analytic formula for the diffuse Kajiya-Kay BRDF in terms of spherical harmonics; this derivation is more complicated than for the standard diffuse lobe. We show that the terms decay even more rapidly than for Lambertian reflectance, going as l??3, where l is the spherical harmonic order, and with only 6 terms (lItem Polynomial Optics: A Construction Kit for Efficient Ray-Tracing of Lens Systems(The Eurographics Association and Blackwell Publishing Ltd., 2012) Hullin, Matthias B.; Hanika, Johannes; Heidrich, Wolfgang; Fredo Durand and Diego GutierrezSimulation of light transport through lens systems plays an important role in graphics. While basic imaging properties can be conveniently derived from linear models (like ABCD matrices), these approximations fail to describe nonlinear effects and aberrations that arise in real optics. Such effects can be computed by proper ray tracing, for which, however, finding suitable sampling and filtering strategies is often not a trivial task. Inspired by aberration theory, which describes the deviation from the linear ray transfer in terms of wavefront distortions, we propose a ray-space formulation for nonlinear effects. In particular, we approximate the analytical solution to the ray tracing problem by means of a Taylor expansion in the ray parameters. This representation enables a construction-kit approach to complex optical systems in the spirit of matrix optics. It is also very simple to evaluate, which allows for efficient execution on CPU and GPU alike, including the computation of mixed derivatives of any order. We evaluate fidelity and performance of our polynomial model, and show applications in high-quality offline rendering and at interactive frame rates.Item Evaluating the Plausibility of Edited Throwing Animations(The Eurographics Association, 2012) Vicovaro, Michele; Hoyet, Ludovic; Burigana, Luigi; O'Sullivan, Carol; Jehee Lee and Paul KryAnimation budget constraints during the development of a game often call for the use of a limited set of generic motions. Editing operations are thus generally required to animate virtual characters with a sufficient level of variety. Evaluating the perceptual plausibility of edited animations can therefore contribute greatly towards producing visually plausible animations. In this paper we study observers' sensitivity to manipulations of overarm and underarm biological throwing animations. In our first experiment, we used Dynamic Time Warping to edit the biological throwing motions, and modified the release velocity of the ball accordingly. We found that observers are more tolerant to speeding up of the original throwing motion than to slowing down, and that slowed down underarm throws are perceived as particularly unnatural. In our second experiment, we modified separately horizontal and vertical components of the release velocity of the ball, while leaving the motion of the thrower unchanged. We found that observers are more sensitive to manipulations of the horizontal component in overarm throws, and of the vertical component in underarm throws. As in the first experiment, we found that observers are most disturbed by decreases in the velocity of the ball in underarm throws. Our results provide valuable insights for developers of games and VR applications by specifying thresholds for the perceptual plausibility of throwing manipulations.