8 results
Search Results
Now showing 1 - 8 of 8
Item ManyLoDs: Parallel Many-View Level-of-Detail Selection for Real-Time Global Illumination(The Eurographics Association and Blackwell Publishing Ltd., 2011) Holländer, Matthias; Ritschel, Tobias; Eisemann, Elmar; Boubekeur, Tamy; Ravi Ramamoorthi and Erik ReinhardLevel-of-Detail structures are a key component for scalable rendering. Built from raw 3D data, these structures are often defined as Bounding Volume Hierarchies, providing coarse-to-fine adaptive approximations that are well-adapted for many-view rasterization. Here, the total number of pixels in each view is usually low, while the cost of choosing the appropriate LoD for each view is high. This task represents a challenge for existing GPU algorithms. We propose ManyLoDs, a new GPU algorithm to efficiently compute many LoDs from a Bounding Volume Hierarchy in parallel by balancing the workload within and among LoDs. Our approach is not specific to a particular rendering technique, can be used on lazy representations such as polygon soups, and can handle dynamic scenes. We apply our method to various many-view rasterization applications, including Instant Radiosity, Point-Based Global Illumination, and reflection / refraction mapping. For each of these, we achieve real-time performance in complex scenes at high resolutions.Item Interactive Indirect Illumination Using Voxel Cone Tracing(The Eurographics Association and Blackwell Publishing Ltd., 2011) Crassin, Cyril; Neyret, Fabrice; Sainz, Miguel; Green, Simon; Eisemann, Elmar; Bing-Yu Chen, Jan Kautz, Tong-Yee Lee, and Ming C. LinIndirect illumination is an important element for realistic image synthesis, but its computation is expensive and highly dependent on the complexity of the scene and of the BRDF of the involved surfaces. While off-line computation and pre-baking can be acceptable for some cases, many applications (games, simulators, etc.) require real-time or interactive approaches to evaluate indirect illumination. We present a novel algorithm to compute indirect lighting in real-time that avoids costly precomputation steps and is not restricted to low-frequency illumination. It is based on a hierarchical voxel octree representation generated and updated on the fly from a regular scene mesh coupled with an approximate voxel cone tracing that allows for a fast estimation of the visibility and incoming energy. Our approach can manage two light bounces for both Lambertian and glossy materials at interactive framerates (25-70FPS). It exhibits an almost scene-independent performance and can handle complex scenes with dynamic content thanks to an interactive octree-voxelization scheme. In addition, we demonstrate that our voxel cone tracing can be used to efficiently estimate Ambient Occlusion.Item Scalable Remote Rendering with Depth and Motion-flow Augmented Streaming(The Eurographics Association and Blackwell Publishing Ltd., 2011) Paja, Dawid; Herzog, Robert; Eisemann, Elmar; Myszkowski, Karol; Seidel, Hans-Peter; M. Chen and O. DeussenIn this paper, we focus on efficient compression and streaming of frames rendered from a dynamic 3D model. Remote rendering and on-the-fly streaming become increasingly attractive for interactive applications. Data is kept confidential and only images are sent to the client. Even if the client's hardware resources are modest, the user can interact with state-of-the-art rendering applications executed on the server. Our solution focuses on augmented video information, e.g., by depth, which is key to increase robustness with respect to data loss, image reconstruction, and is an important feature for stereo vision and other client-side applications. Two major challenges arise in such a setup. First, the server workload has to be controlled to support many clients, second the data transfer needs to be efficient. Consequently, our contributions are twofold. First, we reduce the server-based computations by making use of sparse sampling and temporal consistency to avoid expensive pixel evaluations. Second, our data-transfer solution takes limited bandwidths into account, is robust to information loss, and compression and decompression are efficient enough to support real-time interaction. Our key insight is to tailor our method explicitly for rendered 3D content and shift some computations on client GPUs, to better balance the server/client workload. Our framework is progressive, scalable, and allows us to stream augmented high-resolution (e.g., HDready) frames with small bandwidth on standard hardware.Item Bent Normals and Cones in Screen-space(The Eurographics Association, 2011) Klehm, Oliver; Ritschel, Tobias; Eisemann, Elmar; Seidel, Hans-Peter; Peter Eisert and Joachim Hornegger and Konrad PolthierAmbient occlusion (AO) is a popular technique for real-time as well as offline rendering. One of its benefits is a gain in efficiency due to the fact that occlusion and shading are decoupled which results in an average occlusion that modulates the surface shading. Its main drawback is a loss of realism due to the lack of directional occlusion and lighting. As a solution, the use of bent normals was proposed for offline rendering. This work describes how to compute bent normals and bent cones in combination with screen-space ambient occlusion. These extensions combine the speed and simplicity of AO with physically more plausible lighting.Item A Survey on Temporal Coherence Methods in Real-Time Rendering(The Eurographics Association, 2011) Scherzer, Daniel; Yang, Lei; Mattausch, Oliver; Nehab, Diego; Sander, Pedro V.; Wimmer, Michael; Eisemann, Elmar; N. John and B. WyvillNowadays, there is a strong trend towards rendering to higher-resolution displays and at high frame rates. This development aims at delivering more detail and better accuracy, but it also comes at a significant cost. Although graphics cards continue to evolve with an ever-increasing amount of computational power, the processing gain is counteracted to a high degree by increasingly complex and sophisticated pixel computations. For real-time applications, the direct consequence is that image resolution and temporal resolution are often the first candidates to bow to the performance constraints (e.g., although full HD is possible, PS3 and XBox often render at lower resolutions). In order to achieve high-quality rendering at a lower cost, one can exploit temporal coherence (TC). The underlying observation is that a higher resolution and frame rate do not necessarily imply a much higher workload, but a larger amount of redundancy and a higher potential for amortizing rendering over several frames. In this state-of-the-art report, we investigate methods that make use of this principle and provide practical and theoretical advice on how to exploit temporal coherence for performance optimization. These methods not only allow incorporating more computationally intensive shading effects into many existing applications, but also offer exciting opportunities for extending high-end graphics applications to lower-spec consumer-level hardware. To this end, we first introduce the notion and main concepts of TC, including an overview of historical methods. We then describe a key data structure, the so-called reprojection cache, with several supporting algorithms that facilitate reusing shading information from previous frames, and finally illustrated its usefulness in various applications.Item Making Imperfect Shadow Maps View‐Adaptive: High‐Quality Global Illumination in Large Dynamic Scenes(The Eurographics Association and Blackwell Publishing Ltd., 2011) Ritschel, Tobias; Eisemann, Elmar; Ha, Inwoo; Kim, James D. K.; Seidel, Hans‐Peter; Eduard Groeller and Holly RushmeierWe propose an algorithm to compute interactive indirect illumination in dynamic scenes containing millions of triangles. It makes use of virtual point lights (VPL) to compute bounced illumination and a point‐based scene representation to query indirect visibility, similar to Imperfect Shadow Maps (ISM). To ensure a high fidelity of indirect light and shadows, our solution is made view‐adaptive by means of two orthogonal improvements: First, the VPL distribution is chosen to provide more detail, that is, more dense VPL sampling, where these contribute most to the current view. Second, the scene representation for indirect visibility is adapted to ensure geometric detail where it affects indirect shadows in the current view.Item Learning Line Features in 3D Geometry(The Eurographics Association and Blackwell Publishing Ltd., 2011) Sunkel, Martin; Jansen, Silke; Wand, Michael; Eisemann, Elmar; Seidel, Hans-Peter; M. Chen and O. DeussenFeature detection in geometric datasets is a fundamental tool for solving shape matching problems such as partial symmetry detection. Traditional techniques usually employ a priori models such as crease lines that are unspecific to the actual application. Our paper examines the idea of learning geometric features. We introduce a formal model for a class of linear feature constellations based on a Markov chain model and propose a novel, efficient algorithm for detecting a large number of features simultaneously. After a short user-guided training stage, in which one or a few example lines are sketched directly onto the input data, our algorithm automatically finds all pieces of geometry similar to the marked areas. In particular, the algorithm is able recognize larger classes of semantically similar but geometrically varying features, which is very difficult using unsupervised techniques. In a number of experiments, we apply our technique to point cloud data from 3D scanners. The algorithm is able to detect features with very low rates of false positives and negatives and to recognize broader classes of similar geometry (such as "windows" in a building scan) even from few training examples, thereby significantly improving over previous unsupervised techniques.Item Separable Approximation of Ambient Occlusion(The Eurographics Association, 2011) Huang, Jing; Boubekeur, Tamy; Ritschel, Tobias; Holländer, Matthias; Eisemann, Elmar; N. Avis and S. LefebvreAmbient occlusion (AO) provides an effective approximation to global illumination that enjoys widespread use amongst practitioners. In this paper, we present a fast easy-to-implement separable approximation to screen space ambient occlusion. Computing occlusion first along a single direction and then transporting this occlusion into a second pass that is stochastically evaluating the final shading based on the AO estimates proves extremely efficient. Combined with interleaved sampling and geometry-aware blur, visually convincing results close to a non-separable occlusion can be obtained at much higher performance.