593 results
Search Results
Now showing 1 - 10 of 593
Item Extracting Microfacet-based BRDF Parameters from Arbitrary Materials with Power Iterations(The Eurographics Association and John Wiley & Sons Ltd., 2015) Dupuy, Jonathan; Heitz, Eric; Iehl, Jean-Claude; Poulin, Pierre; Ostromoukhov, Victor; Jaakko Lehtinen and Derek NowrouzezahraiWe introduce a novel fitting procedure that takes as input an arbitrary material, possibly anisotropic, and automatically converts it to a microfacet BRDF. Our algorithm is based on the property that the distribution of microfacets may be retrieved by solving an eigenvector problem that is built solely from backscattering samples. We show that the eigenvector associated to the largest eigenvalue is always the only solution to this problem, and compute it using the power iteration method. This approach is straightforward to implement, much faster to compute, and considerably more robust than solutions based on nonlinear optimizations. In addition, we provide simple conversion procedures of our fits into both Beckmann and GGX roughness parameters, and discuss the advantages of microfacet slope space to make our fits editable. We apply our method to measured materials from two large databases that include anisotropic materials, and demonstrate the benefits of spatially varying roughness on texture mapped geometric models.Item Environment-aware Real-Time Crowd Control(The Eurographics Association, 2012) Henry, Joseph; Shum, Hubert P. H.; Komura, Taku; Jehee Lee and Paul KryReal-time crowd control has become an important research topic due to the recent advancement in console game quality and hardware processing capability. The degrees of freedom of a crowd is much higher than that provided by a standard user input device. As a result most crowd control systems require the user to design the crowd move- ments through multiple passes, such as first specifying the crowd's start and goal points, then providing the agent trajectories with streamlines. Such a multi-pass control would spoil the responsiveness and excitement of real- time games. In this paper, we propose a new, single-pass algorithm to control crowds using a deformable mesh. When controlling crowds, we observe that most of the low level details are related to passive interactions between the crowd and the environment, such as obstacle avoidance and diverging/merging at cross points. Therefore, we simplify the crowd control problem by representing the crowd with a deformable mesh that passively reacts to the environment. As a result, the user can focus on high level control that is more important for context delivery. Our algorithm provides an efficient crowd control framework while maintaining the quality of the simulation, which is useful for real-time applications such as strategy games.Item Real-time Inextensible Hair with Volume and Shape(The Eurographics Association, 2015) Sánchez-Banderas, Rosa María; Barreiro, Héctor; García-Fernández, Ignacio; Pérez, Mariano; Mateu Sbert and Jorge Lopez-MorenoHair simulation is a common topic extensively studied in computer graphics. One of the many challenges in this field is simulating realistic hair in a real-time environment. In this paper, we propose a unified simulation scheme to consider three of the key features in hair simulation; inextensibility, shape preservation and hair-hair interaction. We use an extension to the Dynamic Follow the Leader (DFTL) method to include shape preservation. Our implementation is also coupled with a Lagrangian approach to address the hair-hair interaction dynamics. A GPU-friendly scheme is proposed that is able to exploit the massive parallelism these devices offer, being able to simulate thousands of strands in real-time. The method has been integrated in a game development platform with a shading model for rendering and several test applications have been developed using this implementation.Item Virtual Spherical Gaussian Lights for Real-time Glossy Indirect Illumination(The Eurographics Association and John Wiley & Sons Ltd., 2015) Tokuyoshi, Yusuke; Stam, Jos and Mitra, Niloy J. and Xu, KunVirtual point lights (VPLs) are well established for real-time global illumination. However, this method suffers from spiky artifacts and flickering caused by singularities of VPLs, highly glossy materials, high-frequency textures, and discontinuous geometries. To avoid these artifacts, this paper introduces a virtual spherical Gaussian light (VSGL) which roughly represents a set of VPLs. For a VSGL, the total radiant intensity and positional distribution of VPLs are approximated using spherical Gaussians and a Gaussian distribution, respectively. Since this approximation can be computed using summations of VPL parameters, VSGLs can be dynamically generated using mipmapped reflective shadow maps. Our VSGL generation is simple and independent from any scene geometries. In addition, reflected radiance for a VSGL is calculated using an analytic formula. Hence, we are able to render one-bounce glossy interreflections at real-time frame rates with smaller artifacts.Item Example-based Interpolation and Synthesis of Bidirectional Texture Functions(The Eurographics Association and Blackwell Publishing Ltd., 2013) Ruiters, Roland; Schwartz, Christopher; Klein, Reinhard; I. Navazo, P. PoulinBidirectional Texture Functions (BTF) have proven to be a well-suited representation for the reproduction of measured real-world surface appearance and provide a high degree of realism. We present an approach for designing novel materials by interpolating between several measured BTFs. For this purpose, we transfer concepts from existing texture interpolation methods to the much more complex case of material interpolation. We employ a separation of the BTF into a heightmap and a parallax compensated BTF to cope with problems induced by parallax, masking and shadowing within the material. By working only on the factorized representation of the parallax compensated BTF and the heightmap, it is possible to efficiently perform the material interpolation. By this novel method to mix existing BTFs, we are able to design plausible and realistic intermediate materials for a large range of different opaque material classes. Furthermore, it allows for the synthesis of tileable and seamless BTFs and finally even the generation of gradually changing materials following user specified material distribution maps.Item Interactive Low-Cost Wind Simulation For Cities(The Eurographics Association, 2016) Rando, Eduard; Muñoz, Imanol; Patow, Gustavo; Vincent Tourre and Filip BiljeckiWind is an ubiquitous phenomenon on earth, and its behavior is well studied in many fields. However, its study inside a urban landscape remains an elusive target for large areas given the high complexity of the interactions between wind and buildings. In this paper we propose a lightweight 2D wind simulation in cities that is efficient enough to run at interactive frame-rates, but also accurate enough to provide some prediction capabilities. The proposed algorithm is based on the Lattice-Boltzmann Method (LBM), which consists of a regular lattice that represents the fluid in discrete locations, and a set of equations to simulate its flow. We perform all the computations of the LBM in CUDA on graphics processors for accelerating the calculations.Item Multi-Domain Real-time Planning in Dynamic Environments(ACM SIGGRAPH / Eurographics Association, 2013) Kapadia, Mubbasir; Beacco, Alejandro; Garcia, Francisco; Reddy, Vivek; Pelechano, Nuria; Badler, Norman I.; Theodore Kim and Robert SumnerThis paper presents a real-time planning framework for multicharacter navigation that enables the use of multiple heterogeneous problem domains of differing complexities for navigation in large, complex, dynamic virtual environments. The original navigation problem is decomposed into a set of smaller problems that are distributed across planning tasks working in these different domains. An anytime dynamic planner is used to efficiently compute and repair plans for each of these tasks, while using plans in one domain to focus and accelerate searches in more complex domains. We demonstrate the benefits of our framework by solving many challenging multi-agent scenarios in complex dynamic environments requiring space-time precision and explicit coordination between interacting agents, by accounting for dynamic information at all stages of the decision-making process.Item Geometry and Attribute Compression for Voxel Scenes(The Eurographics Association and John Wiley & Sons Ltd., 2016) Dado, Bas; Kol, Timothy R.; Bauszat, Pablo; Thiery, Jean-Marc; Eisemann, Elmar; Joaquim Jorge and Ming LinVoxel-based approaches are today's standard to encode volume data. Recently, directed acyclic graphs (DAGs) were successfully used for compressing sparse voxel scenes as well, but they are restricted to a single bit of (geometry) information per voxel. We present a method to compress arbitrary data, such as colors, normals, or reflectance information. By decoupling geometry and voxel data via a novel mapping scheme, we are able to apply the DAG principle to encode the topology, while using a palette-based compression for the voxel attributes, leading to a drastic memory reduction. Our method outperforms existing state-of-the-art techniques and is well-suited for GPU architectures. We achieve real-time performance on commodity hardware for colored scenes with up to 17 hierarchical levels (a 128K3 voxel resolution), which are stored fully in core.Item Elasticity-based Clustering for Haptic Interaction with Heterogeneous Deformable Objects(The Eurographics Association, 2017) Gouis, Benoît Le; Marchal, Maud; Lécuyer, Anatole; Arnaldi, Bruno; Fabrice Jaillet and Florence ZaraPhysically-based simulation of heterogeneous objects remains computationally-demanding for many applications, especially when involving haptic interaction with virtual environments. In this paper, we introduce a novel multiresolution approach for haptic interaction with heterogeneous deformable objects. Our method called "Elasticity-based Clustering" is based on the clustering and aggregation of elasticity inside an object, in order to create large homogeneous volumes preserving important features of the initial distribution. The design of such large and homogeneous volumes improves the attribution of elasticity to the elements of the coarser geometry. We could successfully implement and test our approach within a complete and real-time haptic interaction pipeline compatible with consumer-grade haptic devices. We evaluated the performance of our approach on a large set of elasticity configurations using a perception-based quality criterion. Our results show that for 90% of studied cases our method can achieve a 6 times speedup in the simulation time with no theoretical perceptual difference.Item Improving SIMD Efficiency for Parallel Monte Carlo Light Transport on the GPU(ACM, 2011) Antwerpen, Dietger van; Carsten Dachsbacher and William Mark and Jacopo PantaleoniMonte Carlo Light Transport algorithms such as Path Tracing (PT), Bi-Directional Path Tracing (BDPT) and Metropolis Light Transport (MLT) make use of random walks to sample light transport paths. When parallelizing these algorithms on the GPU the stochastic termination of random walks results in an uneven workload between samples, which reduces SIMD efficiency. In this paper we propose to combine stream compaction and sample regeneration to keep SIMD efficiency high during random walk construction, in spite of stochastic termination. Furthermore, for BDPT and MLT, we propose to evaluate all bidirectional connections of a sample in parallel in order to balance the workload between GPU threads and improve SIMD efficiency during sample evaluation. We present efficient parallel GPU-only implementations for PT, BDPT, and MLT in CUDA.We show that our GPU implementations outperform similarCPU implementations by an order of magnitude.