Search Results

Now showing 1 - 10 of 693
  • Item
    Harmonics Virtual Lights: Fast Projection of Luminance Field on Spherical Harmonics for Efficient Rendering
    (© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Mézières, Pierre; Desrichard, François; Vanderhaeghe, David; Paulin, Mathias; Hauser, Helwig and Alliez, Pierre
    In this paper, we introduce harmonics virtual lights (HVL), to model indirect light sources for interactive global illumination of dynamic 3D scenes. Virtual point lights (VPL) are an efficient approach to define indirect light sources and to evaluate the resulting indirect lighting. Nonetheless, VPL suffer from disturbing artefacts, especially with high‐frequency materials. Virtual spherical lights (VSL) avoid these artefacts by considering spheres instead of points but estimates the lighting integral using Monte‐Carlo which results to noise in the final image. We define HVL as an extension of VSL in a spherical harmonics (SH) framework, defining a closed form of the lighting integral evaluation. We propose an efficient SH projection of spherical lights contribution faster than existing methods. Computing the outgoing luminance requires operations when using materials with circular symmetric lobes, and operations for the general case, where is the number of SH bands. HVL can be used with either parametric or measured BRDF without extra cost and offers control over rendering time and image quality, by either decreasing or increasing the band limit used for SH projection. Our approach is particularly well‐designed to render medium‐frequency one‐bounce global illumination with arbitrary BRDF at an interactive frame rate.
  • Item
    Level of Detail Exploration of Electronic Transition Ensembles using Hierarchical Clustering
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Sidwall Thygesen, Signe; Masood, Talha Bin; Linares, Mathieu; Natarajan, Vijay; Hotz, Ingrid; Borgo, Rita; Marai, G. Elisabeta; Schreck, Tobias
    We present a pipeline for the interactive visual analysis and exploration of molecular electronic transition ensembles. Each ensemble member is specified by a molecular configuration, the charge transfer between two molecular states, and a set of physical properties. The pipeline is targeted towards theoretical chemists, supporting them in comparing and characterizing electronic transitions by combining automatic and interactive visual analysis. A quantitative feature vector characterizing the electron charge transfer serves as the basis for hierarchical clustering as well as for the visual representations. The interface for the visual exploration consists of four components. A dendrogram provides an overview of the ensemble. It is augmented with a level of detail glyph for each cluster. A scatterplot using dimensionality reduction provides a second visualization, highlighting ensemble outliers. Parallel coordinates show the correlation with physical parameters. A spatial representation of selected ensemble members supports an in-depth inspection of transitions in a form that is familiar to chemists. All views are linked and can be used to filter and select ensemble members. The usefulness of the pipeline is shown in three different case studies.
  • Item
    DASH: Visual Analytics for Debiasing Image Classification via User-Driven Synthetic Data Augmentation
    (The Eurographics Association, 2022) Kwon, Bum Chul; Lee, Jungsoo; Chung, Chaeyeon; Lee, Nyoungwoo; Choi, Ho-Jin; Choo, Jaegul; Agus, Marco; Aigner, Wolfgang; Hoellt, Thomas
    Image classification models often learn to predict a class based on irrelevant co-occurrences between input features and an output class in training data. We call the unwanted correlations ''data biases,'' and the visual features causing data biases ''bias factors.'' It is challenging to identify and mitigate biases automatically without human intervention. Therefore, we conducted a design study to find a human-in-the-loop solution. First, we identified user tasks that capture the bias mitigation process for image classification models with three experts. Then, to support the tasks, we developed a visual analytics system called DASH that allows users to visually identify bias factors, to iteratively generate synthetic images using a state-of-the-art image-toimage translation model, and to supervise the model training process for improving the classification accuracy. Our quantitative evaluation and qualitative study with ten participants demonstrate the usefulness of DASH and provide lessons for future work.
  • Item
    Intersection Distance Field Collision for GPU
    (The Eurographics Association, 2022) Krayer, Bastian; Görge, Rebekka; Müller, Stefan; Yang, Yin; Parakkat, Amal D.; Deng, Bailin; Noh, Seung-Tak
    We present a framework for finding collision points between objects represented by signed distance fields. Particles are used to sample the region where intersections can occur. The distance field representation is used to project the particles onto the surface of the intersection of both objects. From there information, such as collision normals and intersection depth can be extracted. This allows for handling various types of objects in a unified way. Due to the particle approach, the algorithm is well suited to the GPU.
  • Item
    Prototype to Control a Mid-air CG Character Using Motion Capture Data of a Plush Toy
    (The Eurographics Association, 2022) Fukuoka, Miyu; Ando, Shohei; Koizumi, Naoya; Theophilus Teo; Ryota Kondo
    We propose an integrated operation system that combines puppet motion capture and human body movements to easily control various movements of a mid-air CG character. The proposed method addresses the problems in controlling CG characters via the body movements of a human operator and puppet. This method can also be used to control spatial movements and multiple parts of a character simultaneously. In addition, our method enables an operator to easily move the character in the depth direction, which is a key characteristic of a mid-air image.
  • Item
    EHR STAR: The State‐Of‐the‐Art in Interactive EHR Visualization
    (© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2022) Wang, Q.; Laramee, R.S.; Hauser, Helwig and Alliez, Pierre
    Since the inception of electronic health records (EHR) and population health records (PopHR), the volume of archived digital health records is growing rapidly. Large volumes of heterogeneous health records require advanced visualization and visual analytics systems to uncover valuable insight buried in complex databases. As a vibrant sub‐field of information visualization and visual analytics, many interactive EHR and PopHR visualization (EHR Vis) systems have been proposed, developed, and evaluated by clinicians to support effective clinical analysis and decision making. We present the state‐of‐the‐art (STAR) of EHR Vis literature and open access healthcare data sources and provide an up‐to‐date overview on this important topic. We identify trends and challenges in the field, introduce novel literature and data classifications, and incorporate a popular medical terminology standard called the Unified Medical Language System (UMLS). We provide a curated list of electronic and population healthcare data sources and open access datasets as a resource for potential researchers, in order to address one of the main challenges in this field. We classify the literature based on multidisciplinary research themes stemming from reoccurring topics. The survey provides a valuable overview of EHR Vis revealing both mature areas and potential future multidisciplinary research directions.
  • Item
    Inverse Computational Spectral Geometry
    (The Eurographics Association, 2022) Rodolà, Emanuele; Cosmo, Luca; Ovsjanikov, Maks; Rampini, Arianna; Melzi, Simone; Bronstein, Michael; Marin, Riccardo; Hahmann, Stefanie; Patow, Gustavo A.
    In the last decades, geometry processing has attracted a growing interest thanks to the wide availability of new devices and software that make 3D digital data available and manipulable to everyone. Typical issues faced by geometry processing algorithms include the variety of discrete representations for 3D data (point clouds, polygonal or tet-meshes and voxels), or the type of deformation this data may undergo. Powerful approaches to address these issues come from looking at the spectral decomposition of canonical differential operators, such as the Laplacian, which provides a rich, informative, robust, and invariant representation of the 3D objects. The focus of this tutorial is on computational spectral geometry. We will offer a different perspective on spectral geometric techniques, supported by recent successful methods in the graphics and 3D vision communities and older but notoriously overlooked results. We will discuss both the “forward” path typical of spectral geometry pipelines (e.g. computing Laplacian eigenvalues and eigenvectors of a given shape) with its widespread applicative relevance, and the inverse path (e.g. recovering a shape from given Laplacian eigenvalues, like in the classical “hearing the shape of the drum” problem) with its ill-posed nature and the benefits showcased on several challenging tasks in graphics and geometry processing.
  • Item
    Sketching Vocabulary for Crowd Motion
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Mathew, C. D. Tharindu; Benes, Bedrich; Aliaga, Daniel; Dominik L. Michels; Soeren Pirk
    This paper proposes and evaluates a sketching language to author crowd motion. It focuses on the path, speed, thickness, and density parameters of crowd motion. A sketch-based vocabulary is proposed for each parameter and evaluated in a user study against complex crowd scenes. A sketch recognition pipeline converts the sketches into a crowd simulation. The user study results show that 1) participants at various skill levels and can draw accurate crowd motion through sketching, 2) certain sketch styles lead to a more accurate representation of crowd parameters, and 3) sketching allows to produce complex crowd motions in a few seconds. The results show that some styles although accurate actually are less preferred over less accurate ones.
  • Item
    EUROGRAPHICS 2022: Tutorials Frontmatter
    (The Eurographics Association, 2022) Hahmann, Stefanie; Patow, Gustavo A.; Hahmann, Stefanie; Patow, Gustavo A.
  • Item
    NSTO: Neural Synthesizing Topology Optimization for Modulated Structure Generation
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Zhong, Shengze; Punpongsanon, Parinya; Iwai, Daisuke; Sato, Kosuke; Umetani, Nobuyuki; Wojtan, Chris; Vouga, Etienne
    Nature evolves structures like honeycombs at optimized performance with limited material. These efficient structures can be artificially created with the collaboration of structural topology optimization and additive manufacturing. However, the extensive computation cost of topology optimization causes low mesh resolution, long solving time, and rough boundaries that fail to match the requirements for meeting the growing personal fabrication demands and printing capability. Therefore, we propose the neural synthesizing topology optimization that leverages a self-supervised coordinate-based network to optimize structures with significantly shorter computation time, where the network encodes the structural material layout as an implicit function of coordinates. Continuous solution space is further generated from optimization tasks under varying boundary conditions or constraints for users' instant inference of novel solutions. We demonstrate the system's efficacy for a broad usage scenario through numerical experiments and 3D printing.